http://scholars.ntou.edu.tw/handle/123456789/1059
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Jeng-Tzong Chen | en_US |
dc.contributor.author | Ying-Te Lee | en_US |
dc.contributor.author | Jia-Wei Lee | en_US |
dc.contributor.author | Sheng-Kuang Chen | en_US |
dc.date.accessioned | 2020-11-16T07:10:01Z | - |
dc.date.available | 2020-11-16T07:10:01Z | - |
dc.date.issued | 2020-05 | - |
dc.identifier.issn | 2158-7299 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/1059 | - |
dc.description.abstract | The influence matrix may be of deficient rank in the specified scale when we have solved the 2D elasticity problem by using the boundary element method (BEM). This problem stems from lnr in the 2D Kelvin solution. On the other hand, the single-layer integral operator can not represent the constant term for the degenerate scale in the boundary integral equation method (BIEM). To overcome this problem, we have proposed the enriched fundamental solution containing an adaptive characteristic length to ensure that the argument in the logarithmic function is dimensionless. The adaptive characteristic length, depending on the domain, differs from the constant base by adding a rigid body mode. In the analytical study, the degenerate kernel for the fundamental solution in polar coordinates is revisited. An adaptive characteristic length analytically provides the deficient constant term of the ordinary 2D Kelvin solution. In numerical implementation, adaptive characteristic lengths of the circular boundary, the regular triangular boundary and the elliptical boundary demonstrate the feasibility of the method. By employing the enriched fundamental solution in the BEM/BIEM, the results show the degenerate scale free. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.ispartof | Journal of the Chinese Institute of Engineers | en_US |
dc.subject | Boundary element method | en_US |
dc.subject | 2D elasticity problem | en_US |
dc.subject | degenerate scale | en_US |
dc.subject | characteristic length | en_US |
dc.title | A study on the degenerate scale by using the fundamental solution with dimensionless argument for 2D elasticity problems | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1080/02533839.2020.1721333 | - |
dc.relation.journalvolume | 43 | en_US |
dc.relation.journalissue | 4 | en_US |
dc.relation.pages | 373-385 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en_US | - |
crisitem.author.dept | College of Engineering | - |
crisitem.author.dept | Department of Harbor and River Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.dept | College of Engineering | - |
crisitem.author.dept | Department of Harbor and River Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.orcid | 0000-0001-5653-5061 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Engineering | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Engineering | - |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。