Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/1511
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorShyh-Rong Kuoen_US
dc.contributor.authorLin, J. H.en_US
dc.date.accessioned2020-11-16T11:11:27Z-
dc.date.available2020-11-16T11:11:27Z-
dc.date.issued2002-06-05-
dc.identifier.issn1097-0207-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/1511-
dc.description.abstractFor a plane elasticity problem, the boundary integral equation approach has been shown to yield a non‐unique solution when geometry size is equal to a degenerate scale. In this paper, the degenerate scale problem in the boundary element method (BEM) is analytically studied using the method of stress function. For the elliptic domain problem, the numerical difficulty of the degenerate scale can be solved by using the hypersingular formulation instead of using the singular formulation in the dual BEM. A simple example is shown to demonstrate the failure using the singular integral equations of dual BEM. It is found that the degenerate scale also depends on the Poisson's ratio. By employing the hypersingular formulation in the dual BEM, no degenerate scale occurs since a zero eigenvalue is not embedded in the influence matrix for any case.en_US
dc.language.isoen_USen_US
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.subjectboundary elementsen_US
dc.subjectelasticityen_US
dc.subjectdegenerate scaleen_US
dc.subjectdegenerate kernelen_US
dc.subjectAiry stress functionen_US
dc.titleAnalytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticityen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/nme.476-
dc.relation.journalvolume54en_US
dc.relation.journalissue12en_US
dc.relation.pages1669-1681en_US
item.languageiso639-1en_US-
item.grantfulltextnone-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:河海工程學系
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback