Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16577
Title: Generality and Special Cases of Dual Integral Equations of Elasticity
Other Titles: 彈性破裂力學對偶積分式的廣義性與特例
Authors: Hong-Ki Hong
Jeng-Tzong Chen 
Keywords: crack;supersingularity;integral equation;boundary element
Issue Date: 1988
Publisher: Chinese Society of Mechanical Engineers
Journal Volume: 9
Journal Issue: 1
Start page/Pages: 1-9
Source: Journal of the Chinese Society of Mechanical Engineers 
Abstract: 
In this paper the generality if the theory of dual integral equations derived earlier is explored. It is found that many integral equations and potential methods can be deduced from the dual equations and regarded as special cases of the theory. Some useful new formulations are also invented therefrom. These two equations are independent and totally have four kernel functions, which make it possible an unified theory encompassing different schemes and various derivations and interpretations.本文導出彈性體的對偶邊界積分方程式,指出這一對式子可視為彈性力學邊界值問題的通用列式,足以解析各種二維與三維的彈性力學與彈性破裂力學問題。積分方程式組可以傳統勢位理論來解釋,含有單層勢位、單層勢位導數、雙層勢位、與雙層勢位導數; 對應四個核函數。文中重點在於對此積分方程式組的廣義性加以闡述,發現許多現有方法均為其特例,並且推展出數種新的方法。
URI: http://scholars.ntou.edu.tw/handle/123456789/16577
ISSN: 0257-9731
Appears in Collections:河海工程學系

Show full item record

Page view(s)

179
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback