http://scholars.ntou.edu.tw/handle/123456789/16702
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 鍾立來 | en_US |
dc.contributor.author | 陳正宗 | en_US |
dc.date.accessioned | 2021-04-26T07:48:06Z | - |
dc.date.available | 2021-04-26T07:48:06Z | - |
dc.date.issued | 2014-03 | - |
dc.identifier.issn | 1021-7878 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/16702 | - |
dc.description.abstract | 在結構動力學中,以Duhamel's integral求解結構承受任意外力之動態反應;而在工程數學中,可以參數變異法(variation of parameters),來求解非齊次微分方程式。本文將兩者作一連結,採用工程數學之參數變異法,推導結構動力學之Duhamel's integral,就數學與物理之觀念,即可求得結構之動態反應。此外,續以參數變異法,延伸Duhamel's integral至多自度結構,使之更具通用性。只要質量、勁度及阻尼為常數矩陣,均可適用,而單自由度結構僅為其中之特例。以工程數學之角度,檢視結構動力學之Duhamel's integral,期對執業之工程師、在學之同學及授課之老師,都有所助益。 | en_US |
dc.language.iso | zh | en_US |
dc.publisher | Chinese Society of Structural Engineering | en_US |
dc.relation.ispartof | Structural Engineering | en_US |
dc.title | 參數變異法於結構動力學之應用 | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.6849/SE.201403_29(1).0006 | - |
dc.relation.journalvolume | 29 | en_US |
dc.relation.journalissue | 1 | en_US |
dc.relation.pages | 107-113 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | zh | - |
crisitem.author.dept | College of Engineering | - |
crisitem.author.dept | Department of Harbor and River Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-5653-5061 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Engineering | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
顯示於: | 河海工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。