Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16788
DC 欄位值語言
dc.contributor.authorWen-Cheng Shenen_US
dc.contributor.authorKue-Hong Chenen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-05-05T05:30:57Z-
dc.date.available2021-05-05T05:30:57Z-
dc.date.issued2004-12-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16788-
dc.description國立臺灣大學,臺北,中華民國九十三年十二月en_US
dc.description.abstractThis paper describes a numerical procedure for solving the Laplace problems of circular domain containing multiple circular holes by using the null-field integral equation, Fourier series and degenerate kernels. The unknown boundary potential and flux are approximated by using the truncated Fourier series. Degenerate kernels for the fundamental solutions are utilized in the boundary integral equation. A linear algebraic system is obtained without boundary discretization. Degenerate scale in the multiply-connected domain is also examined. Several examples are illustrated and the results are compared well with the exact solution and those of Caulk's data.本文以勢能理論為基礎,提出以退化核與傅立葉級數展開搭配零場積分方程求解含多孔洞拉普拉斯問題。此方法可視為半解析法。邊界未知勢能與流通量使用有限項傅立葉級數來近似求得。利用退化核與傅立葉展開可導得一線性代數方法而無須對邊界離散,並對退化尺度進行探討。最後以幾個不同邊界條件的拉普拉斯問題進行測試。所得結果無論與解析解或是與Caulk 的數值結果比較,均可驗證本方法的正確性。en_US
dc.language.isoen_USen_US
dc.publisherThe 28th National Conference on Theoretical and Applied Mechanicsen_US
dc.subjectmultiple circular holesen_US
dc.subjectLaplace problemen_US
dc.subjectnull-field integral equationen_US
dc.subjectdegenerate kernelen_US
dc.subjectFourier seriesen_US
dc.subject多孔洞en_US
dc.subject拉普拉斯問題en_US
dc.subject零場積分方程式en_US
dc.subject退化核en_US
dc.subject傅立葉級數en_US
dc.titleA NEW METHOD FOR LAPLACE'S EQUATION IN TWO-DIMENSIONAL REGIONS WITH CIRCULAR HOLESen_US
dc.title.alternative二維區域含圓洞之 拉普拉斯問題的新解法en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 28th National Conference on Theoretical and Applied Mechanicsen_US
dc.relation.pages2043-2051en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

Page view(s)

87
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋