Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16847
DC FieldValueLanguage
dc.contributor.authorChia-Chun HSIAOen_US
dc.contributor.authorShyue-Yuh LEUen_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2021-05-10T08:38:16Z-
dc.date.available2021-05-10T08:38:16Z-
dc.date.issued2005-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16847-
dc.description.abstractThe null-field integral equation method in conjunction with Fourier series and degenerate kernels are proposed to solve the biharmonic equations with circular boundaries. The degenerate kernels in the BIEM are expanded by using the separation of field point and source point. The improper boundary integrals are novelly avoided since the appropriate interior and exterior expansion of degenerate kernels are used. The unknown boundary densities are expressed in terms of Fourier series and the unknown Fourier coefficients can be easily determined by using the collocation method. Finally, the numerical solutions for problems of plate and Stokes flow are compared with the data of finite element solution (ABAQUS) and previous results to demonstrate the validity of the present method. 本文採用零場積分方程法結合傅立葉級數與退化核來求解含圓形邊界雙諧和方程問題。其中退化核即為分離核,係將基本解中場、源點分離導得級數形式,藉由使用退化核的內外域表示式可避免主值積分的計算。未知的邊界密度函數以傅立葉級數展開,並配合選點法,未知的傅立葉係數即可輕易求得。針對板與史托克斯流問題,本文所得之數值結果將與有限元素法套裝軟體 (ABAQUS) 結果和前人研究做一比較,以驗證本法的可行性。en_US
dc.language.isoen_USen_US
dc.publisher九十四年電子計算機於土木水利工程應用研討會en_US
dc.subjectBiharmonic equationen_US
dc.subjectDegenerate kernelen_US
dc.subjectNull-field integral equationen_US
dc.subjectBoundary integral equationen_US
dc.subjectFourier seriesen_US
dc.subjectStokes flowen_US
dc.subjectKirchhoff plateen_US
dc.subject雙諧和函數en_US
dc.subject退化核en_US
dc.subject零場積分方程en_US
dc.subject邊界積分方程en_US
dc.subject傅立葉級數en_US
dc.subject史托克斯流en_US
dc.subjectKirchhoff 板en_US
dc.titleSOLUTION OF BIHARMONIC PROBLEMS WITH CIRCULAR BOUNDARIES USING NULL-FIELD INTEGRAL EQUATIONSen_US
dc.title.alternative零場積分方程求解含圓形邊界雙諧和問題en_US
dc.typeconference paperen_US
dc.relation.conference九十四年電子計算機於土木水利工程應用研討會en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

106
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback