http://scholars.ntou.edu.tw/handle/123456789/16847
Title: | SOLUTION OF BIHARMONIC PROBLEMS WITH CIRCULAR BOUNDARIES USING NULL-FIELD INTEGRAL EQUATIONS | Other Titles: | 零場積分方程求解含圓形邊界雙諧和問題 | Authors: | Chia-Chun HSIAO Shyue-Yuh LEU Jeng-Tzong Chen |
Keywords: | Biharmonic equation;Degenerate kernel;Null-field integral equation;Boundary integral equation;Fourier series;Stokes flow;Kirchhoff plate;雙諧和函數;退化核;零場積分方程;邊界積分方程;傅立葉級數;史托克斯流;Kirchhoff 板 | Issue Date: | 2005 | Publisher: | 九十四年電子計算機於土木水利工程應用研討會 | Conference: | 九十四年電子計算機於土木水利工程應用研討會 | Abstract: | The null-field integral equation method in conjunction with Fourier series and degenerate kernels are proposed to solve the biharmonic equations with circular boundaries. The degenerate kernels in the BIEM are expanded by using the separation of field point and source point. The improper boundary integrals are novelly avoided since the appropriate interior and exterior expansion of degenerate kernels are used. The unknown boundary densities are expressed in terms of Fourier series and the unknown Fourier coefficients can be easily determined by using the collocation method. Finally, the numerical solutions for problems of plate and Stokes flow are compared with the data of finite element solution (ABAQUS) and previous results to demonstrate the validity of the present method. 本文採用零場積分方程法結合傅立葉級數與退化核來求解含圓形邊界雙諧和方程問題。其中退化核即為分離核,係將基本解中場、源點分離導得級數形式,藉由使用退化核的內外域表示式可避免主值積分的計算。未知的邊界密度函數以傅立葉級數展開,並配合選點法,未知的傅立葉係數即可輕易求得。針對板與史托克斯流問題,本文所得之數值結果將與有限元素法套裝軟體 (ABAQUS) 結果和前人研究做一比較,以驗證本法的可行性。 |
URI: | http://scholars.ntou.edu.tw/handle/123456789/16847 |
Appears in Collections: | 河海工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.