Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/16869
DC FieldValueLanguage
dc.contributor.author蕭嘉俊en_US
dc.contributor.author陳正宗en_US
dc.contributor.author呂學育en_US
dc.date.accessioned2021-05-12T07:00:54Z-
dc.date.available2021-05-12T07:00:54Z-
dc.date.issued2006-08-17-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16869-
dc.description萬里翡翠灣, Taipei, 17th-19th, August, 2006en_US
dc.description.abstractSteady, plane Stokes flow of an incompressible viscous fluid is considered within a circular boundary. To fully capture the circular boundary, the boundary densities in the boundary integral equation (BIE) are expanded in terms of Fourier series. The kernel functions in the BIE are expanded to degenerate kernels by using the separation of field and source points. Therefore, the approach can be considered as a semi-analytical method. Novelly, the improper integrals are transformed to series sum and are easily calculated. The linear algebraic system can be established by matching the boundary conditions at the collocation points. Then, the unknown Fourier coefficients can be easily determined. Four gains are achieved, (1) well-posed mode, (2) free of principal value, (3). Illimination of boundary layer effect, (4). Exponential convergence. Finally, several examples including circular and eccentric domains are presented to demonstrate the validity of the present method. 本文將考慮含圓形邊界的穩態、平面的史托克流問題,其中流體為不可壓縮且具黏滯性。邊界積分方程中的未知密度函數以傅立葉級數做展開,其中的退化核係將基本解中依場、源點分離所導得的級數形式,藉由退化核的內外域表示式可避免主值積分的計算。在邊界上均勻佈點,並配合邊界條件可得一線性代數方程式,其未知的傅立葉係數即可輕易求得,將之代回邊界積分方程中可得場解。本法可視為一半解析法。本法有四大好處:(1)良態模式,(2)無須主值計算,(3)無邊界層效應, (4)指數收斂。最後,將舉幾個例子來驗證此法的可行性。en_US
dc.language.isoen_USen_US
dc.publisherThe 13th National Computational Fluid Dynamics Conferenceen_US
dc.subjectbiharmonic equationen_US
dc.subjectboundary integral equationen_US
dc.subjectnull-field integral equationen_US
dc.subjectdegenerate kernelen_US
dc.subjectFourier seriesen_US
dc.subjectStokes flowen_US
dc.subject雙諧和方程en_US
dc.subject邊界積分方程en_US
dc.subject零場積分方程en_US
dc.subject退化核en_US
dc.subject傅立葉級數en_US
dc.subject史托克流en_US
dc.titleSemi-analytical approach for solving Stokes flow problems with circular boundariesen_US
dc.title.alternative含圓形邊界史托克流問題之半解析法en_US
dc.typeconference paperen_US
dc.relation.conferenceThe 13th National Computational Fluid Dynamics Conferenceen_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeconference paper-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

204
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback