Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/16971
DC 欄位值語言
dc.contributor.authorJung-Hua Wangen_US
dc.contributor.authorChih-ping Hsiaoen_US
dc.date.accessioned2021-06-03T07:55:05Z-
dc.date.available2021-06-03T07:55:05Z-
dc.date.issued1999-03-29-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/16971-
dc.description.abstractThis paper presents a neural framework for dealing with the problem of disparity matching in stereo vision. Two different types of neural networks are used in this framework: one is called the vitality conservation (VC) network for learning clustering, and the other is the back-propagation (BP) network for learning disparity matching. The VC network utilizes a vitality conservation principle to facilitate self-development in network growing. The training process of VC is smooth and incremental; it not only achieves the biologically plausible learning property, but also facilitates systematic derivations for training parameters. Using the [intensity, variation, orientation, x, y] of each pixel (or a block) as the training vector, the VC network dismembers the input image into several clusters, and results can be used by the BP network to achieve accurate matching. Unlike the conventional k-means and self-organizing feature map (SOFM), VC is a self-creating network; the number of clusters is self-organizing and need not be pre-specified. The BP network, using differential features as input training data, can learn the functional relationship between differential features and the matching degree. After training, the BP network is first used to generate an initial disparity (range) map. With the clustering results and the initial map, a matching algorithm that incorporates the BP network is then applied to recursively refine the map in a cluster-bycluster manner. In the matching process, useful constraints, such as a epipolar line, ordering, geometry and continuity, are employed to reduce the occurrence of mismatching. The matching process continues until all clusters are matched. Empirical results indicate that the proposed framework is very promising for applications in stereo vision.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the National Science Council : Part A, Physical Science and Engineeringen_US
dc.subjectstereo visionen_US
dc.subjectdisparity matchingen_US
dc.subjectself-creating networksen_US
dc.subjectback-propagation networken_US
dc.subjectclusteringen_US
dc.subjectneural networksen_US
dc.subjectself-organizing feature mapen_US
dc.titleOn disparity matching in stereo vision via a neural network frameworken_US
dc.typejournal articleen_US
dc.identifier.doi10.1.1.105.9067-
dc.relation.journalvolume23en_US
dc.relation.journalissue5en_US
dc.relation.pages665-678en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

92
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋