Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17056
DC FieldValueLanguage
dc.contributor.authorJen-Da Rauen_US
dc.contributor.authorJung-Hua Wangen_US
dc.date.accessioned2021-06-07T08:45:57Z-
dc.date.available2021-06-07T08:45:57Z-
dc.date.issued1999-10-
dc.identifier.issn1062-922X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17056-
dc.description.abstractWe propose a modified SCONN (self creating and organising neural network) classifier (MSC), which uses the algorithm of learning vector quantization. We adopt two commonly used features, namely the crossing-count feature and contour-direction feature in our recognition system. The experimental results show that MSC performs well and has advantages of being simple in network structure and efficient in computation time. A voting principle useful in selecting candidates based on measurement values derived from variable error distance is proposed. We test several formulas for calculating the confidence level (ballots) of candidates, and show that the proposed voting principle can increase up to 10% in recognition accuracy than otherwise using the MSC alone.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleA voting principle of multiple features for Chinese character recognition system using neural network classifiersen_US
dc.typeconference paperen_US
dc.relation.conferenceIEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cyberneticsen_US
dc.relation.conferenceTokyo, Japanen_US
dc.identifier.doi10.1109/ICSMC.1999.816667-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.openairetypeconference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
Appears in Collections:電機工程學系
Show simple item record

Page view(s)

88
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback