Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17507
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Jiang-Renen_US
dc.date.accessioned2021-08-05T02:15:08Z-
dc.date.available2021-08-05T02:15:08Z-
dc.date.issued2021-07-06-
dc.identifier.issn1741-5977-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/17507-
dc.description.abstractIn the paper, we solve two Stefan problems. The first problem recovers an unknown moving boundary by specifying the Cauchy boundary conditions on a fixed left-end. The second problem finds a time-dependent heat flux on the left-end, such that a desired moving boundary can be achieved. Then, we solve an inverse Cauchy-Stefan problem, using the over-specified Cauchy boundary conditions on a given moving boundary to recover the solution. Resorting on a homogenization function method, we recast these problems into the ones having homogeneous boundary and initial conditions. Consequently, the approximate solution is obtained by solving a linear system obtained from the collocation method in a reduced domain. For the first Stefan problem the moving boundary can be determined accurately, after solving a nonlinear equation at each discretized time. For the second Stefan problem, we can obtain the required boundary heat flux without needing of iteration. Numerical examples, including non-smooth ones, confirm that the novel methods are simple and robust against large noise. Moreover, the Stefan and inverse Cauchy-Stefan problems are solved without initial conditions.en_US
dc.language.isoEnglishen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofINVERSE PROBLEMS IN SCIENCE AND ENGINEERINGen_US
dc.subjectInverse Cauchy-Stefan problemsen_US
dc.subjectmoving boundary identificationen_US
dc.subjectheat flux identificationen_US
dc.subjecthomogenization functionen_US
dc.subjecthomogenization methoden_US
dc.subjectspace-time boundary shape function methoden_US
dc.titleA homogenization method to solve inverse Cauchy-Stefan problems for recovering non-smooth moving boundary, heat flux and initial valueen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/17415977.2021.1949591-
dc.identifier.isiWOS:000671988900001-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:海洋中心
系統工程暨造船學系
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

201
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback