http://scholars.ntou.edu.tw/handle/123456789/17773
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Su, Mu-Chun | en_US |
dc.contributor.author | Tai, Pang-Ti | en_US |
dc.contributor.author | Chen, Jieh-Haur | en_US |
dc.contributor.author | Hsieh, Yi-Zeng | en_US |
dc.contributor.author | Lee, Shu-Fang | en_US |
dc.contributor.author | Yeh, Zhe-Fu | en_US |
dc.date.accessioned | 2021-10-13T05:50:54Z | - |
dc.date.available | 2021-10-13T05:50:54Z | - |
dc.date.issued | 2021-08-01 | - |
dc.identifier.issn | 1530-437X | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/17773 | - |
dc.description.abstract | Exercise monitoring systems for rehabilitation are usually not able to pinpoint the exact part for patients' exercise. The research objective is to develop the projection-based motion recognition (PMR) algorithm based on depth data and wide-accepted methods to solve this matter. We regard a motion trajectory as a combination of basic posture units, and then project the basic posture units onto a 2-D space via a projection mapping. Each motion trajectory is transformed to a 2-D motion trajectory map by sequentially connecting the basic posture units involved in the motion trajectory. Finally, we employ a convolutional neural network (CNN)-based classifier to classify the trajectory maps. Accurate classification rate reaches as high as 95.21%. The originality of PMR algorithm lies in (1) it has the generalization capability to some extent since it only adopts popular methods and contains an essential and comprehensive mechanism; (2) the resultant trajectory map may reveal the information about how well a patient execute the rehabilitation assignments. | en_US |
dc.language.iso | English | en_US |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | en_US |
dc.relation.ispartof | IEEE SENSORS JOURNAL | en_US |
dc.subject | Trajectory | en_US |
dc.subject | Sensors | en_US |
dc.subject | Monitoring | en_US |
dc.subject | Clustering algorithms | en_US |
dc.subject | Image recognition | en_US |
dc.subject | Hidden Markov models | en_US |
dc.subject | Oceans | en_US |
dc.subject | Motion trajectory | en_US |
dc.subject | spatial-temporal pattern recognition | en_US |
dc.subject | therapeutic exercise | en_US |
dc.subject | deep learning | en_US |
dc.title | A Projection-Based Human Motion Recognition Algorithm Based on Depth Sensors | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1109/JSEN.2021.3079983 | - |
dc.identifier.isi | WOS:000679541000062 | - |
dc.relation.journalvolume | 21 | en_US |
dc.relation.journalissue | 15 | en_US |
dc.relation.pages | 16990-16996 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | College of Electrical Engineering and Computer Science | - |
crisitem.author.dept | Department of Electrical Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.orcid | 0000-0002-5758-4516 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Electrical Engineering and Computer Science | - |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。