http://scholars.ntou.edu.tw/handle/123456789/17865
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Jeun-Len Wu | en_US |
dc.contributor.author | Shaw-Ching Sheen | en_US |
dc.contributor.author | Shenq-Yuh Jaw, | en_US |
dc.date.accessioned | 2021-10-19T08:52:23Z | - |
dc.date.available | 2021-10-19T08:52:23Z | - |
dc.date.issued | 1998-04-15 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/17865 | - |
dc.description.abstract | Based on the Euler–Maclaurin formula, a compact finite difference scheme is employed to solve a two-point boundary value problem for studying the secondary instabilities of the boundary layer flow. The parametric resonance of unstable waves is explored using the Floquet method. For both subharmonic and fundamental modes, two additional Fourier terms are added in the analysis, and the spatial growth rates are determined. The effect of suction mechanism on the secondary instability waves is also investigated. From numerical experiments, it is shown that the proposed numerical scheme is very promising. © 1998 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en | en_US |
dc.title | Numerical Analysis of Secondary Instabilities of the Incompressible Boundary Layer Flow with Suction | en_US |
dc.type | journal article | en_US |
dc.relation.journalvolume | 26 | en_US |
dc.relation.journalissue | 7 | en_US |
dc.relation.pages | 811-835 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | College of Engineering | - |
crisitem.author.dept | Department of Systems Engineering and Naval Architecture | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Engineering | - |
顯示於: | 系統工程暨造船學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。