Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/19090
DC 欄位值語言
dc.contributor.authorHuang, Chia-Huien_US
dc.contributor.authorYip, Bak-Sauen_US
dc.contributor.authorTaniar, Daviden_US
dc.contributor.authorHwang, Chi-Shinen_US
dc.contributor.authorPai, Tun-Wenen_US
dc.date.accessioned2021-12-10T00:28:13Z-
dc.date.available2021-12-10T00:28:13Z-
dc.date.issued2021-02-
dc.identifier.issn2076-3417-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/19090-
dc.description.abstractElectronic Medical Records (EMRs) can be used to create alerts for clinicians to identify patients at risk and to provide useful information for clinical decision-making support. In this study, we proposed a novel approach for predicting Amyotrophic Lateral Sclerosis (ALS) based on comorbidities and associated indicators using EMRs. The medical histories of ALS patients were analyzed and compared with those of subjects without ALS, and the associated comorbidities were selected as features for constructing the machine learning and prediction model. We proposed a novel weighted Jaccard index (WJI) that incorporates four different machine learning techniques to construct prediction systems. Alternative prediction models were constructed based on two different levels of comorbidity: single disease codes and clustered disease codes. With an accuracy of 83.7%, sensitivity of 78.8%, specificity of 85.7%, and area under the receiver operating characteristic curve (AUC) value of 0.907 for the single disease code level, the proposed WJI outperformed the traditional Jaccard index (JI) and scoring methods. Incorporating the proposed WJI into EMRs enabled the construction of a prediction system for analyzing the risk of suffering a specific disease based on comorbidity combinatorial patterns, which could provide a fast, low-cost, and noninvasive evaluation approach for early diagnosis of a specific disease.en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofAPPL SCI-BASELen_US
dc.subjectHEALTH-CAREen_US
dc.subjectSIMILARITYen_US
dc.subjectSCOREen_US
dc.subjectMULTIMORBIDITYen_US
dc.subjectRISKen_US
dc.titleComorbidity Pattern Analysis for Predicting Amyotrophic Lateral Sclerosisen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/app11031289-
dc.identifier.isiWOS:000614994000001-
dc.relation.journalvolume11en_US
dc.relation.journalissue3en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypejournal article-
顯示於:03 GOOD HEALTH AND WELL-BEING
資訊工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

4
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

108
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋