Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/19427
Title: Seasonal and Interannual Variability of Carbon Cycle in South China Sea: A Three-Dimensional Physical-Biogeochemical Modeling Study
Authors: Fei Chai
Guimei Liu
Huijie Xue
Lei Shi
Hsiu-Yi Chao 
Chun Mao Tseng
Wen-Chen Chou 
Kon-Kee Liu
Keywords: Carbon cycle;south china sea;physicalbiogeochemical modeling;seasonal and interannual variability
Issue Date: 1-Oct-2009
Publisher: Springer
Journal Volume: 65
Journal Issue: 5
Start page/Pages: 703-720
Source: Original Articles
Abstract: 
The South China Sea (SCS) exhibits strong variations on seasonal to interannual time scale, and the changing Southeast Asian Monsoon has direct impacts on the nutrients and phytoplankton dynamics, as well as the carbon cycle. A Pacific basin-wide physical-biogeochemical model has been developed and used to investigate the physical variations, ecosystem responses, and carbon cycle consequences. The Pacific basin-wide circulation model, based on the Regional Ocean Model Systems (ROMS) with a 50-km spatial resolution, is driven with daily air-sea fluxes derived from the National Centers for Environmental Prediction (NCEP) reanalysis between 1990 and 2004. The biogeochemical processes are simulated with the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSINE) model consisting of multiple nutrients and plankton functional groups and detailed carbon cycle dynamics. The ROMS-CoSINE model is capable of reproducing many observed features and their variability over the same period at the SouthEast Asian Time-series Study (SEATS) station in the SCS. The integrated air-sea CO2 flux over the entire SCS reveals a strong seasonal cycle, serving as a source of CO2 to the atmosphere in spring, summer and autumn, but acting as a sink of CO2 for the atmosphere in winter. The annual mean sea-to-air CO2 flux averaged over the entire SCS is +0.33 moles CO2 m−2year−1, which indicates that the SCS is a weak source of CO2 to the atmosphere. Temperature has a stronger influence on the seasonal variation of pCO2 than biological activity, and is thus the dominant factor controlling the oceanic pCO2 in the SCS. The water temperature, seasonal upwelling and Kuroshio intrusion determine the pCO2 differences at coast of Vietnam and the northwestern region of the Luzon Island. The inverse relationship between the interannual variability of Chl-a in summer near the coast of Vietnam and NINO3 SST (Sea Surface Temperature) index in January implies that the carbon cycle and primary productivity in the SCS is teleconnected to the Pacific-East Asian large-scale climatic variability.
URI: http://scholars.ntou.edu.tw/handle/123456789/19427
DOI: 10.1007/s10872-009-0061-5
Appears in Collections:海洋環境與生態研究所

Show full item record

WEB OF SCIENCETM
Citations

57
checked on Oct 16, 2022

Page view(s)

172
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback