Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/20154
DC 欄位值語言
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Jiang-Renen_US
dc.date.accessioned2022-02-10T02:50:39Z-
dc.date.available2022-02-10T02:50:39Z-
dc.date.issued2021-05-17-
dc.identifier.issn1565-1339-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20154-
dc.description.abstractFor a third-order nonlinear boundary value problem (BVP), we develop two novel methods to find the solutions, satisfying boundary conditions automatically. A boundary shape function (BSF) is created to automatically satisfy the boundary conditions, which is then employed to develop new numerical algorithms by adopting two different roles of the free function in the BSF. In the first type algorithm, we let the BSF be the solution of the BVP and the free function be a new variable. In doing so, the nonlinear BVP is certainly and exactly transformed to an initial value problem for the new variable with its terminal values as unknown parameters, whereas the initial conditions are given. In the second type algorithm, let the free functions be a set of complete basis functions and the corresponding boundary shape functions be the new bases. Since the solution already satisfies the boundary conditions automatically, we can apply a simple collocation technique inside the domain to determine the expansion coefficients and then the solution is obtained. For the general higher-order boundary conditions, the BSF method (BSFM) can easily and quickly find a very accurate solution. Resorting on the BSFM, the existence of solution is proved, under the Lipschitz condition for the ordinary differential equation system of the new variable. Numerical examples, including the singularly perturbed ones, confirm the high performance of the BSF-based numerical algorithms.en_US
dc.language.isoEnglishen_US
dc.publisherWALTER DE GRUYTER GMBHen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATIONen_US
dc.subjectboundary shape functions methoden_US
dc.subjectfractional power exponential functionsen_US
dc.subjectsingularly perturbed problemsen_US
dc.subjectthird-order nonlinear BVPen_US
dc.titleSolving nonlinear third-order boundary value problems based-on boundary shape functionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1515/ijnsns-2020-0114-
dc.identifier.isiWOS:000738229900001-
item.languageiso639-1English-
item.grantfulltextnone-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
item.cerifentitytypePublications-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Systems Engineering and Naval Architecture-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.orcid0000-0002-4551-5409-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:海洋中心
系統工程暨造船學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/6/27

Page view(s)

134
上周
0
上個月
2
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋