Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20429
DC FieldValueLanguage
dc.contributor.authorChen, Chi-Jimen_US
dc.contributor.authorPai, Tun-Wenen_US
dc.contributor.authorHsu, Hui-Huangen_US
dc.contributor.authorLee, Chien-Hungen_US
dc.contributor.authorChen, Kuo-Suen_US
dc.contributor.authorChen, Yung-Chihen_US
dc.date.accessioned2022-02-17T03:56:25Z-
dc.date.available2022-02-17T03:56:25Z-
dc.date.issued2020-02-7-
dc.identifier.issn1751-7575-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20429-
dc.description.abstractTo detect chronic kidney disease (CKD) at earlier stages, diagnosis through non-invasive ultrasonographic imaging techniques provides an auxiliary clinical approach for at-risk CKD patients. We have established a detection method based on imaging processing techniques and machine learning approaches for the diagnosis of different CKD stages. Decisive area-proportional and textural features and support-vector-machine techniques were applied for efficient and effective analyses. Several clustered collections of CKD patients were evaluated and compared according to the estimated glomerular filtration rates. Based on the findings of evolving changes from ultrasound images, the proposed approach could be used as complementary evidences to help differentiate between different clinical diagnoses.en_US
dc.language.isoen_USen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofENTERP INF SYST-UKen_US
dc.subjectCARDIOVASCULAR-DISEASEen_US
dc.subjectPRACTICE GUIDELINESen_US
dc.subjectCLASSIFICATIONen_US
dc.titlePrediction of chronic kidney disease stages by renal ultrasound imagingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/17517575.2019.1597386-
dc.identifier.isiWOS:000465686900001-
dc.relation.journalvolume14en_US
dc.relation.journalissue2en_US
dc.relation.pages178-195en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypejournal article-
Appears in Collections:03 GOOD HEALTH AND WELL-BEING
資訊工程學系
Show simple item record

WEB OF SCIENCETM
Citations

13
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

71
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback