Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. SDGs
  3. 13 CLIMATE ACTION
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20668
DC FieldValueLanguage
dc.contributor.authorPhu Nguyenen_US
dc.contributor.authorMohammed Ombadien_US
dc.contributor.authorSoroosh Sorooshianen_US
dc.contributor.authorKuolin Hsuen_US
dc.contributor.authorAmir AghaKouchaken_US
dc.contributor.authorDan Braithwaiteen_US
dc.contributor.authorHamed Ashourien_US
dc.contributor.authorAndrea Rose Thorstensenen_US
dc.date.accessioned2022-02-17T05:21:07Z-
dc.date.available2022-02-17T05:21:07Z-
dc.date.issued2018-11-13-
dc.identifier.issn1027-5606-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20668-
dc.description.abstractOver the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.en_US
dc.language.isoen_USen_US
dc.publisherCOPERNICUS GESELLSCHAFT MBHen_US
dc.relation.ispartofHYDROL EARTH SYST SCen_US
dc.subjectMEASURING MISSION TRMMen_US
dc.subjectNEURAL-NETWORKen_US
dc.subjectDAILY RAINFALLen_US
dc.subjectPASSIVE MICROWAVEen_US
dc.subjectIMAGERYen_US
dc.subjectIDENTIFICATIONen_US
dc.subjectSIMULATIONen_US
dc.subjectMODELen_US
dc.titleThe PERSIANN family of global satellite precipitation data: a review and evaluation of productsen_US
dc.typejournal articleen_US
dc.identifier.doi10.5194/hess-22-5801-2018-
dc.identifier.isiWOS:000449995800001-
dc.relation.journalvolume22en_US
dc.relation.journalissue11en_US
dc.relation.pages5801-5816en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.openairetypejournal article-
item.grantfulltextnone-
Appears in Collections:13 CLIMATE ACTION
Show simple item record

WEB OF SCIENCETM
Citations

121
Last Week
0
Last month
5
checked on Jun 27, 2023

Page view(s)

51
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback