Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 海洋工程科技學士學位學程(系)
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/20862
DC FieldValueLanguage
dc.contributor.authorChia-Cheng Tsaien_US
dc.contributor.authorTai-Wen Hsuen_US
dc.date.accessioned2022-03-02T02:51:13Z-
dc.date.available2022-03-02T02:51:13Z-
dc.date.issued2013-10-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/20862-
dc.description.abstractIn this paper, analytical particular solutions of multiquadrics and Chebyshev polynomials associated with problems of three-dimensional thermoelasticity are derived, which provides a supplement to the review article of Cheng, Chen, Golberg and Rashed (Engineering Analysis with Boundary Elements 25 (2001), 377). In the derivation, the three coupled second-order partial differential equations (PDEs) are converted into a biharmonic equation. Then, the multiquadric and polynomial particular solutions of the biharmonic equation are obtained respectively by straight integrations and referring to the first author‘s recent study. For the multiquadric particular solutions, they are set to be infinitely differentiable by suitably arranging the coefficients of its Laurent series. And for the polynomial particular solutions, they can be represented explicitly and implemented without any book keeping. Numerical experiments are carried out to validate the derived particular solutions.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectElasticityen_US
dc.subjectThermoelasticityen_US
dc.subjectDual reciprocity methoden_US
dc.subjectMethod of particular solutionsen_US
dc.subjectMultiquadricsen_US
dc.subjectChebyshev polynomialen_US
dc.titleMultiquadric and Chebyshev approximation to three-dimensional thermoelasticity with arbitrary body forcesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2013.06.002-
dc.identifier.isiWOS:000323589900005-
dc.relation.journalvolume37en_US
dc.relation.journalissue10en_US
dc.relation.pages1259–1266en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptBachelor Degree Program in Ocean Engineering and Technology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptDoctorate Degree Program in Ocean Engineering and Technology-
crisitem.author.deptOcean Energy and Engineering Technology-
crisitem.author.orcidhttp://orcid.org/0000-0002-4464-5623-
crisitem.author.orcid0000-0003-3784-7179-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
海洋工程科技學士學位學程(系)
Show simple item record

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Jun 22, 2023

Page view(s)

122
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback