Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21396
DC 欄位值語言
dc.contributor.authorChen, Chih-Jungen_US
dc.contributor.authorYan, Yung-Jheen_US
dc.contributor.authorHuang, Chi-Choen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorChu, Chang-Tingen_US
dc.contributor.authorJang, Je-Weien_US
dc.contributor.authorChen, Tzung-Chengen_US
dc.contributor.authorLin, Shiou-Gwoen_US
dc.contributor.authorShih, Ruei-Siangen_US
dc.contributor.authorMang Ou-Yangen_US
dc.date.accessioned2022-04-11T00:32:11Z-
dc.date.available2022-04-11T00:32:11Z-
dc.date.issued2022-02-17-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21396-
dc.description.abstractSugariness is one of the most important indicators to measure the quality of Syzygium samarangense, which is also known as the wax apple. In general, farmers used to measure sugariness by testing the extracted juice of the wax apple products. Such a destructive way to measure sugariness is not only labor-consuming but also wasting products. Therefore, non-destructive and quick techniques for measuring sugariness would be significant for wax apple supply chains. Traditionally, the non-destructive method to predict the sugariness or the other indicators of the fruits was based on the reflectance spectra or Hyperspectral Images (HSIs) using linear regression such as Multi-Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least Square Regression (PLSR), etc. However, these regression methods are usually too simple to precisely estimate the complicated mapping between the reflectance spectra or HSIs and the sugariness. This study presents the deep learning methods for sugariness prediction using the reflectance spectra or HSIs from the bottom of the wax apple. A non-destructive imaging system fabricated with two spectrum sensors and light sources is implemented to acquire the visible and infrared lights with a range of wavelengths. In particular, a specialized Convolutional Neural Network (CNN) with hyperspectral imaging is proposed by investigating the effect of different wavelength bands for sugariness prediction. Rather than extracting spatial features, the proposed CNN model was designed to extract spectral features of HSIs. In the experiments, the ground-truth value of sugariness is obtained from a commercial refractometer. The experimental results show that using the whole band range between 400 and 1700 nm achieves the best performance in terms of degrees Brix error. CNN models attain the degrees Brix error of +/- 0.552, smaller than +/- 0.597 using Feedforward Neural Network (FNN). Significantly, the CNN's test results show that the minor error in the interval 0 to 10 degrees Brix and 10 to 11 degrees Brix are +/- 0.551 and +/- 0.408, these results indicate that the model would have the capability to predict if sugariness is below 10 degrees Brix or not, which would be similar to the human tongue. These results are much better than +/- 1.441 and +/- 1.379 by using PCR and PLSR, respectively. Moreover, this study provides the test error in each degrees Brix interval within one Brix, and the results show that the test error is varied considerably within different degrees Brix intervals, especially on PCR and PLSR. On the other hand, FNN and CNN obtain robust results in terms of test error.en_US
dc.language.isoen_USen_US
dc.publisherNATURE PORTFOLIOen_US
dc.relation.ispartofSCIENTIFIC REPORTSen_US
dc.titleSugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral imagesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1038/s41598-022-06679-6-
dc.identifier.isiWOS:000757537100030-
dc.relation.journalvolume12en_US
dc.relation.journalissue1en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Page view(s)

182
上周
1
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋