Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21404
DC 欄位值語言
dc.contributor.authorChang, Chuan-Wangen_US
dc.contributor.authorSantra, Santanuen_US
dc.contributor.authorHsieh, Jun-Weien_US
dc.contributor.authorHendri, Pirdiansyahen_US
dc.contributor.authorLin, Chi-Fangen_US
dc.date.accessioned2022-04-11T00:32:13Z-
dc.date.available2022-04-11T00:32:13Z-
dc.date.issued2022-03-03-
dc.identifier.issn1380-7501-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21404-
dc.description.abstractReal-time HI (Human Interface) systems need accurate and efficient hand detection models to meet the limited resources in budget, dimension, memory, computing, and electric power. The detection task is also important for other applications such as homecare systems, fine-grained action recognition, movie interpretation, and even for understanding dance gestures. In recent years, object detection has become a less challenging task with the latest deep CNN-based state-of-the-art models, i.e., RCNN, SSD, and YOLO. However, these models cannot achieve desired efficiency and accuracy on HI-based embedded devices due to their complex time-consuming architecture. Another critical issue in hand detection is that small hands (<30 x 30 pixels) are still challenging for all the above methods. We proposed a shallow model named Multi-fusion Feature Pyramid for real-time hand detection to deal with the above problems. Experimental results on the Oxford hand dataset combined with the skin dataset show that the proposed method outperforms other SoTA methods in terms of accuracy, efficiency, and real-time speed. The COCO dataset is also used to compare with other state-of-the-art method and shows the highest efficiency and accuracy with the proposed CFPN model. Thus we conclude that the proposed model is useful for real-life small hand detection on embedded devices.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.subjectObject detectionen_US
dc.subjectHand detectionen_US
dc.subjectEmbedded systemen_US
dc.subjectHumanen_US
dc.subjectYOLOV4en_US
dc.titleMulti-fusion feature pyramid for real-time hand detectionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11042-021-11897-7-
dc.identifier.isiWOS:000763872100001-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1English-
item.openairetypejournal article-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

99
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋