Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋中心
  3. 海洋中心
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21508
DC FieldValueLanguage
dc.contributor.authorLiu, Chein-Shanen_US
dc.contributor.authorChang, Chih-Wenen_US
dc.date.accessioned2022-05-05T01:11:13Z-
dc.date.available2022-05-05T01:11:13Z-
dc.date.issued2021-01-01-
dc.identifier.issn1023-2796-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21508-
dc.description.abstractFor a second-order quasilinear singularly perturbed problem under the Dirichlet boundary conditions, we propose a new asymptotic numerical method, which involves two problems: a reduced problem with a one-side boundary condition and a novel boundary layer correction problem with a two-sided boundary condition. Through the introduction of two new variables, both problems are transformed to a set of three first-order initial value problems with zero initial conditions. The Runge-Kutta method is then applied to integrate the differential equations and to determine two unknown terminal values of the new variables until they converge. The modified asymptotic numerical solution satisfies the Dirichlet boundary conditions. Some examples confirm that the newly proposed method can achieve a better asymptotic solution to the quasilinear singularly perturbed problem. For most values of the perturbing parameter, the present method not only preserves the inherent asymptotic property within the boundary layer but also improves the accuracy within the entire domain.en_US
dc.language.isoEnglishen_US
dc.publisherNATL TAIWAN OCEAN UNIVen_US
dc.relation.ispartofJOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWANen_US
dc.subjectQuasilinear singularly perturbed problemen_US
dc.subjectAsymptotic numerical methoden_US
dc.subjectInitial value problem methoden_US
dc.subjectModified asymptotic solutionen_US
dc.titleAsymptotic Numerical Solutions for Second-order Quasilinear Singularly Perturbed Problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.51400/2709-6998.2554-
dc.identifier.isiWOS:000773558800003-
dc.relation.journalvolume29en_US
dc.relation.journalissue6en_US
dc.relation.pages743-756en_US
dc.identifier.eissn2709-6998-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-6366-3539-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:海洋中心
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

126
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback