http://scholars.ntou.edu.tw/handle/123456789/21569
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wen-Shuo Tsung | en_US |
dc.contributor.author | Shih-Chun Hsiao | en_US |
dc.contributor.author | Ta-Yu Huang | en_US |
dc.contributor.author | Nan-Jing Wu | en_US |
dc.date.accessioned | 2022-05-06T03:50:18Z | - |
dc.date.available | 2022-05-06T03:50:18Z | - |
dc.date.issued | 2013-07 | - |
dc.identifier.issn | 0749-0208 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/21569 | - |
dc.description.abstract | A two-dimensional numerical model using radial basis functions (RBFs) and collocation points for solving partial differential equations (PDE) is presented in this study. This method is a general meshless method called RBF collocation method. The basic concept of RBF collocation method is to approximate the solution for a PDE as a linear combination of RBFs. The feature of this method requires neither the domain nor the boundary meshes. The main framework is developed by Wu and Chang (2011), and is applicable for solving moving boundary problems with free surface wave. Different from the conventional RBF collocation methods that usually malfunction in the seeking of partial derivatives around the boundaries, the present model resolved the problems by additionally requiring the satisfaction of the governing equations on boundaries. The model validation is performed by comparing the present results of the submarine landslide induced-wave with other numerical solutions, such as BIEM (Lynett and Liu, 2002), a high-order Boussinesq-type model (Furhman and Madsen, 2009). Fairly good agreements are observed. Finally, the landslide-induced wave propagation and shoreline motion on three plane slopes are also discussed. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | COASTAL EDUCATION & RESEARCH FOUNDATION | en_US |
dc.relation.ispartof | JOURNAL OF COASTAL RESEARCH | en_US |
dc.subject | meshless method | en_US |
dc.subject | RBF | en_US |
dc.subject | run-up | en_US |
dc.subject | Shoreline | en_US |
dc.subject | submarine landslide | en_US |
dc.subject | tsunami | en_US |
dc.title | Simulation of propagation and run-up of landslide-induced waves using meshless method | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.2112/SI65-069.1 | - |
dc.identifier.isi | WOS:000337995500070 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en_US | - |
crisitem.author.dept | College of Ocean Science and Resource | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Department of Marine Environmental Informatics | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | River and Coastal Disaster Prevention | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Ocean Science and Resource | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
Appears in Collections: | 海洋環境資訊系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.