Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/21824
DC 欄位值語言
dc.contributor.authorAdipraja, Philip F. E.en_US
dc.contributor.authorChang, Chin-Chunen_US
dc.contributor.authorWang, Wei-Jenen_US
dc.contributor.authorLiang, Deronen_US
dc.date.accessioned2022-06-02T05:14:26Z-
dc.date.available2022-06-02T05:14:26Z-
dc.date.issued2022-01-01-
dc.identifier.issn0278-6125-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/21824-
dc.description.abstractThe demand for high-quality customized products compels manufacturers to adopt batch production. With the ability to accurately estimate batch production yield rates in advance, manufacturers can effectively plan the batch production process and control the production risk based on the estimated values. The per-batch production yield rates can be directly predicted by multiplying the accurately estimated per-machine yield rates corresponding to a batch. Unfortunately, for most manufacturers, the actual per-machine yield rates are difficult to estimate owing to a variety factors. Moreover, per-batch yield-rate prediction has received little attention because recent studies only focused on yield-rate prediction methods for single/continuous production systems. To address this, we propose an expectation-maximization-based approach to predict per-batch yield rates by estimating the per-machine yield rates. Based on the data from T-company, the proposed method could predict the per-batch yield rates for the subsequent week with an average accuracy of 91.86 %, and for five consecutive weeks with an average accuracy of more than 90 %. To further evaluate the performance of the proposed method with different batch production patterns, we conducted simulations to obtain the average accuracy of the estimated per-machine yield rates. In the simulations, the average prediction accuracy of the per-batch yield rates was 91.29 % in the batch production pattern, as in the case of T-company (similar to 250 machines and similar to 1000 batches per week), and it increased as the number of batches increased.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofJOURNAL OF MANUFACTURING SYSTEMSen_US
dc.subjectBatch yield-rate predictionen_US
dc.subjectEM algorithmen_US
dc.subjectMachine yield-rate estimationen_US
dc.subjectManufacturing processen_US
dc.titlePrediction of per-batch yield rates in production based on maximum likelihood estimation of per-machine yield ratesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jmsy.2021.11.015-
dc.identifier.isiWOS:000793397700005-
dc.relation.journalvolume62en_US
dc.relation.pages249-262en_US
dc.identifier.eissn1878-6642-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

185
上周
0
上個月
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋