http://scholars.ntou.edu.tw/handle/123456789/21999
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsai, Y. H. | en_US |
dc.contributor.author | Yan, Y. J. | en_US |
dc.contributor.author | Li, Y. S. | en_US |
dc.contributor.author | Chang, C. H. | en_US |
dc.contributor.author | Haung, C. C. | en_US |
dc.contributor.author | Chen, T. C. | en_US |
dc.contributor.author | Lin, S. G. | en_US |
dc.contributor.author | Ou-Yang, M. | en_US |
dc.date.accessioned | 2022-07-01T01:53:03Z | - |
dc.date.available | 2022-07-01T01:53:03Z | - |
dc.date.issued | 2022-06-01 | - |
dc.identifier.issn | 0034-6748 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/21999 | - |
dc.description.abstract | A hyperspectral imaging system (HIS) is a helpful tool that acquires spatial and spectral information from a target. This study developed a coaxial heterogeneous HIS (CHHIS) to collect spectral images with wavelengths ranging from 400 to 1700 nm. In this system, a visible (VIS) spectrometer and a short-wave infrared (SWIR) spectrometer are combined with a coaxial optical path to share the same field of view. This structure reduces the complexity of spatial registration and maintains the scanning duration of two spectrometers as that of a single spectrometer. The spectrometers are also replaceable for extending the detecting spectral range of the system. The calibration methodologies, including spatial correction, spectral calibration, and reflectance calibration, were developed for this system. The signal-to-noise ratio of VIS and SWIR spectrometers in the CHHIS was up to 40 and 60 dB when the exposure time of the VIS and SWIR imaging sensors was 1000 and 10 ms, respectively. When the target distance was at 600 mm, the spatial error of VIS and SWIR images in the scanning direction was less than 1 pixel; these results proved that the system was stable. Published under an exclusive license by AIP Publishing. | en_US |
dc.language.iso | English | en_US |
dc.publisher | AIP Publishing | en_US |
dc.relation.ispartof | REVIEW OF SCIENTIFIC INSTRUMENTS | en_US |
dc.title | Development and verification of the coaxial heterogeneous hyperspectral imaging system | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1063/5.0088474 | - |
dc.identifier.isi | WOS:000808503800002 | - |
dc.relation.journalvolume | 93 | en_US |
dc.relation.journalissue | 6 | en_US |
dc.identifier.eissn | 1089-7623 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | College of Electrical Engineering and Computer Science | - |
crisitem.author.dept | Department of Communications, Navigation and Control Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Electrical Engineering and Computer Science | - |
Appears in Collections: | 通訊與導航工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.