http://scholars.ntou.edu.tw/handle/123456789/22071
標題: | Dynamic-Error-Compensation-Assisted Deep Learning Framework for Solar Power Forecasting |
作者: | Su, Heng-Yi Tang, Chen |
關鍵字: | Predictive models;Computational modeling;Logic gates;Reliability;Forecasting;Solar energy;Prediction algorithms;Choquet integral;deep learning;gated recurrent unit;hierarchical learning;residual correction;solar energy |
公開日期: | 七月-2022 |
出版社: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
卷: | 13 |
期: | 3 |
起(迄)頁: | 1865-1868 |
來源出版物: | IEEE T SUSTAIN ENERG |
摘要: | A reliable approach to forecasting solar energy generation using deep learning (DL) models is presented. The approach relies on a prediction-correction (PC) framework. It is composed of a primary model that performs preliminary prediction, followed by a secondary model that is charged with the task of dynamic error compensation (DEC), based on hierarchical residual (HR) learning and Choquet fuzzy ... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22071 |
ISSN: | 1949-3029 |
DOI: | 10.1109/TSTE.2022.3156437 |
顯示於: | 機械與機電工程學系 07 AFFORDABLE & CLEAN ENERGY |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。