http://scholars.ntou.edu.tw/handle/123456789/2367
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jeng-Tzong Chen | en_US |
dc.contributor.author | Chung, I. L. | en_US |
dc.date.accessioned | 2020-11-17T03:22:33Z | - |
dc.date.available | 2020-11-17T03:22:33Z | - |
dc.date.issued | 2002-04-25 | - |
dc.identifier.issn | 1598-6217 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/2367 | - |
dc.description.abstract | In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Techno Press | en_US |
dc.relation.ispartof | Structural Engineering and Mechanics | en_US |
dc.subject | dynamic stiffness and flexibility | en_US |
dc.subject | an efficient mixed-part dual BEM | en_US |
dc.subject | overdetermined system | en_US |
dc.title | Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.12989/sem.2002.13.4.437 | - |
dc.relation.journalvolume | 13 | en_US |
dc.relation.journalissue | 4 | en_US |
dc.relation.pages | 437-453 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en_US | - |
crisitem.author.dept | College of Engineering | - |
crisitem.author.dept | Department of Harbor and River Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-5653-5061 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Engineering | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
Appears in Collections: | 河海工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.