Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2375
DC FieldValueLanguage
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorChia-Chun Hsiaoen_US
dc.contributor.authorShyue-Yuh Leuen_US
dc.date.accessioned2020-11-17T03:22:34Z-
dc.date.available2020-11-17T03:22:34Z-
dc.date.issued2007-11-23-
dc.identifier.issn1097-0207-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2375-
dc.description.abstractThis study is concerned with the Stokes flow of an incompressible fluid of constant density and viscosity with circular boundaries. To fully capture the circular boundary, the boundary densities in the direct and indirect boundary integral equations (BIEs) are expanded in terms of Fourier series. The kernel functions in either the direct BIE or the indirect BIE are expanded to degenerate kernels by using the separation of field and source points. Consequently, the improper integrals are transformed to series sum and are easily calculated. The linear algebraic system can be established by matching the boundary conditions at the collocation points. Then, the unknown Fourier coefficients can be easily determined. Finally, several examples including circular and eccentric domains are presented to demonstrate the validity of the present method. Five gains were obtained: (1) meshless approach; (2) free of boundary‐layer effect; (3) singularity free; (4) exponential convergence; and (5) well‐posed model.en_US
dc.language.isoen_USen_US
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.subjectbiharmonic equationen_US
dc.subjectboundary integral equationen_US
dc.subjectnull-field integral equationen_US
dc.subjectdegenerate kernelen_US
dc.subjectFourier seriesen_US
dc.subjectStokes flowen_US
dc.titleA new method for Stokes problems with circular boundaries using degenerate kernel and Fourier seriesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/nme.2240-
dc.relation.journalvolume74en_US
dc.relation.journalissue13en_US
dc.relation.pages1955-1987en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

Page view(s)

313
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback