Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/2409
DC 欄位值語言
dc.contributor.authorJeng-Tzong Chenen_US
dc.contributor.authorJia-Wei Leeen_US
dc.contributor.authorKuen-Ting Lienen_US
dc.date.accessioned2020-11-17T03:22:39Z-
dc.date.available2020-11-17T03:22:39Z-
dc.date.issued2020-05-
dc.identifier.issn0955-7997-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2409-
dc.description.abstractThe theory of boundary eigensolutions is developed for boundary value problems. It is general for boundary value problem. Steklov-Poincaré operator maps the values of a boundary condition of the solution of the Laplace equation in a domain to the values of another boundary condition. The eigenvalue is imbedded in the Dirichlet to Neumann (DtN) map. The DtN operator is called the Steklov operator. In this paper, we study the Steklov eigenproblems by using the dual boundary element method/boundary integral equation method (BEM/BIEM). First, we consider a circular domain. To analytically derive the eigensolution of the above shape, the closed-form fundamental solution of the 2D Laplace equation, ln(r), is expanded into degenerate kernel by using the polar coordinate system. After the boundary element discretization of the BIE for the Steklov eigenproblem, it can be transformed to a standard linear eigenequation. Problems can be effectively solved by using the dual BEM. Finally, we consider the annulus. Not only the Steklov problem but also the mixed Steklov eigenproblem for an annular domain has been considered.en_US
dc.language.isoen_USen_US
dc.publisherScienceDirecten_US
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_US
dc.subjectBoundary eigensolutionen_US
dc.subjectSteklov eigenproblemsen_US
dc.subjectThe boundary integral equation method/boundary element methoden_US
dc.subjectDegenerate kernelen_US
dc.titleAnalytical and numerical studies for solving Steklov eigenproblems by using the boundary integral equation method/boundary element methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.enganabound.2020.02.005-
dc.relation.journalvolume114en_US
dc.relation.pages136-147en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
顯示於:河海工程學系
顯示文件簡單紀錄

WEB OF SCIENCETM
Citations

1
上周
0
上個月
0
checked on 2023/3/20

Page view(s)

175
上周
1
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋