Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/24414
DC FieldValueLanguage
dc.contributor.author陳世曄en_US
dc.contributor.authorHe, Qi-Fongen_US
dc.contributor.authorLai, Chin-Fengen_US
dc.date.accessioned2024-01-12T08:27:12Z-
dc.date.available2024-01-12T08:27:12Z-
dc.date.issued2021-
dc.identifier.issn1387-3326-
dc.identifier.issn1572-9419-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24414-
dc.description.abstractIn traditional environment exploration algorithms, two problems are still waiting to be solved. One is that as the exploration time increases, the robot will repeatedly explore the areas that have been explored. The other is that in order to explore the environment more accurately, the robot will cause slight collisions during the exploration process. In order to solve the two problems, a DQN-based exploration model is proposed, which enables the robot to quickly find the unexplored area in an unknown environment, and designs a DQN-based navigation model to solve the local minima problem generated by the robot during the exploration. Through the switching mechanism of exploration model and navigation model, the robot can quickly complete the exploration task through selecting the modes according to the environment exploration situation. In the experiment results, the difference between the proposed unknown environment exploration method and the previous known-environment exploration methods research is less than 5% under the same exploration time. And in the proposed method, the robot can achieve zero collision and almost zero repeated exploration of the area when it has been trained for 30w rounds. Therefore, it can be seen that the proposed method is more practical than the previous methods.en_US
dc.language.isoen_USen_US
dc.relation.ispartofInformation Systems Frontiersen_US
dc.titleDeep Reinforcement Learning-Based Robot Exploration for Constructing Map of Unknown Environmenten_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s10796-021-10218-5-
dc.identifier.isiWOS:000714897100001-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.openairetypejournal article-
item.grantfulltextnone-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:資訊工程學系
Show simple item record

Page view(s)

129
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback