http://scholars.ntou.edu.tw/handle/123456789/24584
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, Chein-Shan | en_US |
dc.contributor.author | El-Zahar, Essam R. | en_US |
dc.contributor.author | Chang, Chih-Wen | en_US |
dc.date.accessioned | 2024-03-04T08:53:23Z | - |
dc.date.available | 2024-03-04T08:53:23Z | - |
dc.date.issued | 2023-11-01 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/24584 | - |
dc.description.abstract | A nonlinear equation f(x)=0 is mathematically transformed to a coupled system of quasi-linear equations in the two-dimensional space. Then, a linearized approximation renders a fractional iterative scheme xn+1=xn-f(xn)/[a+bf(xn)], which requires one evaluation of the given function per iteration. A local convergence analysis is adopted to determine the optimal values of a and b. Moreover, upon combining the fractional iterative scheme to the generalized quadrature methods, the fourth-order optimal iterative schemes are derived. The finite differences based on three data are used to estimate the optimal values of a and b. We recast the Newton iterative method to two types of derivative-free iterative schemes by using the finite difference technique. A three-point generalized Hermite interpolation technique is developed, which includes the weight functions with certain constraints. Inserting the derived interpolation formulas into the triple Newton method, the eighth-order optimal iterative schemes are constructed, of which four evaluations of functions per iteration are required. | en_US |
dc.language.iso | English | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | MATHEMATICS | en_US |
dc.subject | nonlinear equation | en_US |
dc.subject | two-dimensional approach | en_US |
dc.subject | fractional iterative scheme | en_US |
dc.subject | modified derivative-free Newton method | en_US |
dc.subject | quadratures | en_US |
dc.subject | fourth-order optimal iterative scheme | en_US |
dc.subject | three-point generalized Hermite interpolation | en_US |
dc.subject | eighth-order optim | en_US |
dc.title | A Two-Dimensional Variant of Newton's Method and a Three-Point Hermite Interpolation: Fourth- and Eighth-Order Optimal Iterative Schemes | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.3390/math11214529 | - |
dc.identifier.isi | WOS:001100540700001 | - |
dc.relation.journalvolume | 11 | en_US |
dc.relation.journalissue | 21 | en_US |
dc.identifier.eissn | 2227-7390 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-6366-3539 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
顯示於: | 海洋中心 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。