Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 商船學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/24634
DC 欄位值語言
dc.contributor.authorHuang, I-Lunen_US
dc.contributor.authorLee, Man-Chunen_US
dc.contributor.authorNieh, Chung-Yuanen_US
dc.contributor.authorHuang, Juan-Chenen_US
dc.date.accessioned2024-03-05T07:53:27Z-
dc.date.available2024-03-05T07:53:27Z-
dc.date.issued2024/1/1-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/24634-
dc.description.abstractAIS ship-type code categorizes ships into broad classes, such as fishing, passenger, and cargo, yet struggles with finer distinctions among cargo ships, such as bulk carriers and containers. Different ship types significantly impact acceleration, steering performance, and stopping distance, thus making precise identification of unfamiliar ship types crucial for maritime monitoring. This study introduces an original classification study based on AIS data for cargo ships, presenting a classifier tailored for bulk carriers, containers, general cargo, and vehicle carriers. The model's efficacy was tested within the Changhua Wind Farm Channel using eight classification algorithms across tree-structure-based, proximity-based, and regression-based categories and employing standard metrics (Accuracy, Precision, Recall, F1-score) to assess the performance. The results show that tree-structure-based algorithms, particularly XGBoost and Random Forest, demonstrated superior performance. This study also implemented a feature selection strategy with five methods, revealing that a model trained with only four features (three ship-geometric features and one trajectory behavior feature) can achieve high accuracy. Conclusively, the classifier effectively overcame the challenges of limited AIS data labels, achieving a classification accuracy of 97% for ships in the Changhua Wind Farm Channel. These results are pivotal in identifying abnormal ship behavior, highlighting the classifier's potential for maritime monitoring applications.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofELECTRONICSen_US
dc.subjectship-type classificationen_US
dc.subjectmachine learningen_US
dc.subjectAIS dataen_US
dc.subjectoffshore wind farm channelen_US
dc.titleShip Classification Based on AIS Data and Machine Learning Methodsen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/electronics13010098-
dc.identifier.isiWOS:001139166800001-
dc.relation.journalvolume13en_US
dc.relation.journalissue1en_US
dc.identifier.eissn2079-9292-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptDepartment of Merchant Marine-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Merchant Marine-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptDivision of Ship-Handling Simulation-
crisitem.author.deptMaritime Development and Training Center-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgMaritime Development and Training Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
顯示於:商船學系
顯示文件簡單紀錄

Page view(s)

136
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋