http://scholars.ntou.edu.tw/handle/123456789/24716
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, Chein-Shan | en_US |
dc.contributor.author | Kuo, Chung-Lun | en_US |
dc.contributor.author | Chang, Chih-Wen | en_US |
dc.date.accessioned | 2024-03-06T03:51:35Z | - |
dc.date.available | 2024-03-06T03:51:35Z | - |
dc.date.issued | 2024/1/15 | - |
dc.identifier.issn | 1526-1492 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/24716 | - |
dc.description.abstract | To solve the Laplacian problems, we adopt a meshless method with the multiquadric radial basis function (MQRBF) as a basis whose center is distributed inside a circle with a fictitious radius. A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function. A sample function is interpolated by the MQ-RBF to provide a trial coefficient vector to compute the merit function. We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm. The novel method provides the optimal values of parameters and, hence, an optimal MQ-RBF; the performance of the method is validated in numerical examples. Moreover, nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition; this can overcome the problem of these problems being ill-posed. The optimal MQ-RBF is extremely accurate. We further propose a novel optimal polynomial method to solve the nonharmonic problems, which achieves high precision up to an order of 10-11. | en_US |
dc.language.iso | English | en_US |
dc.publisher | TECH SCIENCE PRESS | en_US |
dc.relation.ispartof | CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | en_US |
dc.subject | Laplace equation | en_US |
dc.subject | nonharmonic boundary value problem | en_US |
dc.subject | Ill-posed problem | en_US |
dc.subject | maximal projection | en_US |
dc.subject | optimal shape factor and fictitious radius | en_US |
dc.subject | optimal MQ-RBF | en_US |
dc.subject | optimal polynomial method | en_US |
dc.title | Optimal Shape Factor and Fictitious Radius in the MQ-RBF: Solving Ill-Posed Laplacian Problems | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.32604/cmes.2023.046002 | - |
dc.identifier.isi | WOS:001148413200001 | - |
dc.identifier.eissn | 1526-1506 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-6366-3539 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
顯示於: | 海洋中心 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。