Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/2507
DC FieldValueLanguage
dc.contributor.authorLee, W. M.en_US
dc.contributor.authorJeng-Tzong Chenen_US
dc.date.accessioned2020-11-17T03:22:51Z-
dc.date.available2020-11-17T03:22:51Z-
dc.date.issued2016-10-03-
dc.identifier.issn1520-8524-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/2507-
dc.description.abstractThe collocation multipole method is presented to solve three-dimensional acoustic scattering problems with multiple prolate spheroids subjected to a plane sound wave. To satisfy the three-dimensional Helmholtz equation in prolate spheroidal coordinates and the radiation condition at infinity, the scattered field is formulated in terms of radial and angular prolate spheroidal wave functions. Instead of using the complicated addition theorem of prolate spheroidal wave functions, the multipole method, the directional derivative, and the collocation technique are combined to solve multiple scattering problems semi-analytically. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure with respect to a non-local prolate spheroidal coordinate system is developed without any truncation error for multiply connected domain problems. By truncating the higher order terms of the multipole expansion, a finite linear algebraic system is obtained and the scattered field is determined from the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure and the far field scattering pattern are determined. Numerical experiments for convergence are performed to provide the guide lines for the proposed method. The proposed results of acoustic scattering by one, two, and three prolate spheroids are compared with those of an available analytical method and the boundary element method to validate the proposed method. Finally, the effects of the eccentricity of a prolate spheroidal scatterer, the separation between scatterers and the incident wave number on the near-field acoustic pressure and the far-field scattering pattern are investigated.en_US
dc.language.isoen_USen_US
dc.publisherAIP Publishingen_US
dc.relation.ispartofThe Journal of the Acoustical Society of Americaen_US
dc.titleComputation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1121/1.4963089-
dc.relation.journalvolume140en_US
dc.relation.journalissue4en_US
dc.relation.pages2235en_US
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypejournal article-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Harbor and River Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for Ocean Engineering-
crisitem.author.deptBasic Research-
crisitem.author.orcid0000-0001-5653-5061-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCenter of Excellence for Ocean Engineering-
Appears in Collections:河海工程學系
Show simple item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Apr 9, 2021

Page view(s)

192
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback