http://scholars.ntou.edu.tw/handle/123456789/25261
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, Chein-Shan | en_US |
dc.contributor.author | Chang, Chih-Wen | en_US |
dc.date.accessioned | 2024-11-01T06:26:23Z | - |
dc.date.available | 2024-11-01T06:26:23Z | - |
dc.date.issued | 2024/4/1 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/25261 | - |
dc.description.abstract | In the paper, two nonlinear variants of the Newton method are developed for solving nonlinear equations. The derivative-free nonlinear fractional type of the one-step iterative scheme of a fourth-order convergence contains three parameters, whose optimal values are obtained by a memory-dependent updating method. Then, as the extensions of a one-step linear fractional type method, we explore the fractional types of two- and three-step iterative schemes, which possess sixth- and twelfth-order convergences when the parameters' values are optimal; the efficiency indexes are 6 and 123, respectively. An extra variable is supplemented into the second-degree Newton polynomial for the data interpolation of the two-step iterative scheme of fractional type, and a relaxation factor is accelerated by the memory-dependent method. Three memory-dependent updating methods are developed in the three-step iterative schemes of linear fractional type, whose performances are greatly strengthened. In the three-step iterative scheme, when the first step involves using the nonlinear fractional type model, the order of convergence is raised to sixteen. The efficiency index also increases to 163, and a third-degree Newton polynomial is taken to update the values of optimal parameters. | en_US |
dc.language.iso | English | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | MATHEMATICS | en_US |
dc.subject | nonlinear equation | en_US |
dc.subject | nonlinear perturbation of Newton method | en_US |
dc.subject | fractional type iterative schemes | en_US |
dc.subject | multi-step iterative scheme | en_US |
dc.subject | memory-dependent method | en_US |
dc.title | Updating to Optimal Parametric Values by Memory-Dependent Methods: Iterative Schemes of Fractional Type for Solving Nonlinear Equations | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.3390/math12071032 | - |
dc.identifier.isi | WOS:001201103300001 | - |
dc.relation.journalvolume | 12 | en_US |
dc.relation.journalissue | 7 | en_US |
dc.identifier.eissn | 2227-7390 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-6366-3539 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
顯示於: | 海洋中心 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。