http://scholars.ntou.edu.tw/handle/123456789/25346
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Chein-Shan | en_US |
dc.contributor.author | Kuo, Chung-Lun | en_US |
dc.contributor.author | Chang, Chih-Wen | en_US |
dc.date.accessioned | 2024-11-01T06:27:54Z | - |
dc.date.available | 2024-11-01T06:27:54Z | - |
dc.date.issued | 2024/6/1 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/25346 | - |
dc.description.abstract | We derive a double-optimal iterative algorithm (DOIA) in an m-degree matrix pencil Krylov subspace to solve a rectangular linear matrix equation. Expressing the iterative solution in a matrix pencil and using two optimization techniques, we determine the expansion coefficients explicitly, by inverting an mxm positive definite matrix. The DOIA is a fast, convergent, iterative algorithm. Some properties and the estimation of residual error of the DOIA are given to prove the absolute convergence. Numerical tests demonstrate the usefulness of the double-optimal solution (DOS) and DOIA in solving square or nonsquare linear matrix equations and in inverting nonsingular square matrices. To speed up the convergence, a restarted technique with frequency m is proposed, namely, DOIA(m); it outperforms the DOIA. The pseudoinverse of a rectangular matrix can be sought using the DOIA and DOIA(m). The Moore-Penrose iterative algorithm (MPIA) and MPIA(m) based on the polynomial-type matrix pencil and the optimized hyperpower iterative algorithm OHPIA(m) are developed. They are efficient and accurate iterative methods for finding the pseudoinverse, especially the MPIA(m) and OHPIA(m). | en_US |
dc.language.iso | English | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | MATHEMATICS | en_US |
dc.subject | linear matrix equations | en_US |
dc.subject | matrix pencil Krylov subspace method | en_US |
dc.subject | double-optimal iterative algorithm | en_US |
dc.subject | Moore-Penrose pseudoinverse | en_US |
dc.subject | restarted DOIA | en_US |
dc.subject | optimized hyperpower method | en_US |
dc.title | Matrix Pencil Optimal Iterative Algorithms and Restarted Versions for Linear Matrix Equation and Pseudoinverse | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.3390/math12111761 | - |
dc.identifier.isi | WOS:001245684800001 | - |
dc.relation.journalvolume | 12 | en_US |
dc.relation.journalissue | 11 | en_US |
dc.identifier.eissn | 2227-7390 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.dept | Center of Excellence for Ocean Engineering | - |
crisitem.author.dept | Basic Research | - |
crisitem.author.orcid | 0000-0001-6366-3539 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | Center of Excellence for Ocean Engineering | - |
Appears in Collections: | 海洋中心 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.