Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25366
DC 欄位值語言
dc.contributor.authorAzizi, S. Pourmohammaden_US
dc.date.accessioned2024-11-01T06:27:59Z-
dc.date.available2024-11-01T06:27:59Z-
dc.date.issued2024/9/1-
dc.identifier.issn0167-2789-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25366-
dc.description.abstractIn this research, we propose a novel approach for time series forecasting using dynamical systems, signal processing, and Neural Networks, which we named 2DS-L. As dynamical systems frequently display complex and nonlinear behavior, accurately modeling time series data's evolving dynamics and interdependencies is crucial to time series prediction. Managing high -dimensional and complex datasets is another challenge in machine learning time series prediction. Using mathematical relationships, the proposed method decomposes the time series signal and establishes a connection between its dynamical system and a neural network. The performance of the 2DS-L method was compared with other popular methods like LSTM, GRU, and DEANN using stock price data, climate change data, and biology data. The results showed that despite having only 35% of the training parameters of LSTM and 50% GRU, the 2DS-L method's performance was better or close to it. This paper's approach offers an efficient and accurate forecasting technique that could be valuable in various domains, including finance, climate, and biology.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofPHYSICA D-NONLINEAR PHENOMENAen_US
dc.subjectDynamical systemen_US
dc.subjectSignal decompositionen_US
dc.subjectTime seriesen_US
dc.subjectLong short-term memoryen_US
dc.subjectGated recurrent uniten_US
dc.subjectNeural networken_US
dc.title2DS-L: A dynamical system decomposition of signal approach to learning with application in time series predictionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.physd.2024.134203-
dc.identifier.isiWOS:001243415700001-
dc.relation.journalvolume465en_US
dc.identifier.eissn1872-8022-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

144
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋