http://scholars.ntou.edu.tw/handle/123456789/25414
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liang, Yuan -Chang | en_US |
dc.contributor.author | Kuo, Chih-Chen | en_US |
dc.date.accessioned | 2024-11-01T06:30:26Z | - |
dc.date.available | 2024-11-01T06:30:26Z | - |
dc.date.issued | 2024/9/1 | - |
dc.identifier.issn | 2468-2284 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/25414 | - |
dc.description.abstract | We successfully synthesized three-layered photocatalysts by modifying Bi nanoparticles on TiO2/BiVO4 bilayer composite films through a sol-gel process and sputtering. When exposed to ambient air, the surface of the prepared Bi nanoparticles oxidizes to form an amorphous ultra-thin Bi2O3 out layer. Under light exposure, this layer is reduced to metallic Bi, thanks to the band alignment between the Bi nanoparticles and TiO2/BiVO4 Z-scheme composite. The addition of Bi nanoparticles in the composite films improves visible-light absorption by the surface plasmon resonance (SPR), which contributes to the hot electron and enhances the photocatalytic characteristics. By constructing effective TiO2/BiVO4 Z-scheme heterostructures to facilitate photoinduced electronhole pair separation and prevent recombination, Bi nanoparticles can efficiently capture photons and enhance the photocatalytic efficiency of semiconductors through the SPR effect. Optimizing the content of Bi nanoparticles decorated on the TiO2/BiVO4 Z-scheme composite film is a promising approach for designing a highly efficient photocatalyst, as evidenced by the performance of photoelectrochemical properties and RhB photodegradation ability. | en_US |
dc.language.iso | English | en_US |
dc.publisher | VIETNAM NATL UNIV | en_US |
dc.relation.ispartof | JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES | en_US |
dc.subject | Bi nanoparticles | en_US |
dc.subject | Composite film | en_US |
dc.subject | Semiconductors | en_US |
dc.subject | Junctions | en_US |
dc.title | Construction of broad-spectrum photocatalyst films through interface engineering: Orchestrating Bi nanoparticles in TiO2/BiVO4 Z-scheme heterojunctions | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1016/j.jsamd.2024.100764 | - |
dc.identifier.isi | WOS:001270175500001 | - |
dc.relation.journalvolume | 9 | en_US |
dc.relation.journalissue | 3 | en_US |
dc.identifier.eissn | 2468-2179 | - |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | College of Electrical Engineering and Computer Science | - |
crisitem.author.dept | Department of Optoelectronics and Materials Technology | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Electrical Engineering and Computer Science | - |
Appears in Collections: | 光電與材料科技學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.