Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25427
DC 欄位值語言
dc.contributor.authorNafei, Amirhosseinen_US
dc.contributor.authorAzizi, S. Pourmohammaden_US
dc.contributor.authorEdalatpanah, Seyed Ahmaden_US
dc.contributor.authorHuang, Chien-Yien_US
dc.date.accessioned2024-11-01T06:30:29Z-
dc.date.available2024-11-01T06:30:29Z-
dc.date.issued2024/12/1-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25427-
dc.description.abstractDecision-making in complex environments requires advanced methodologies to manage uncertainty and indeterminacy effectively. This research introduces a novel decision-making framework that integrates the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with Neutrosophic Triplets (NTs) to address the limitations of decision-making methods in handling indeterminate information. By incorporating a frequency analysis-based ranking strategy and leveraging neural network-driven machine learning, the proposed method significantly enhances the accuracy and computational efficiency of the decision-making process. The necessity of this research stems from the growing complexity of multi-attribute decision-making (MADM) scenarios where traditional methods fall short in accurately ranking alternatives under uncertainty. The novelty lies in integrating NTs with a machine-learning approach, providing a more flexible and robust framework for MADM. The proposed method's contributions are demonstrated through its application in green supplier selection, a critical area in sustainable supply chain management. The results reveal that the smart TOPSIS method improves decision accuracy and reduces computational complexity, making it a viable tool for broader applications. Although the proposed methodology is primarily applied to green supplier selection management, it can also be extended to real-world scenarios in various research fields.en_US
dc.language.isoEnglishen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.subjectMulti -attribute decision makingen_US
dc.subjectMachine learningen_US
dc.subjectNeural networksen_US
dc.subjectNeutrosophic setsen_US
dc.subjectScore functionen_US
dc.subjectTOPSISen_US
dc.titleSmart TOPSIS: A Neural Network-Driven TOPSIS with Neutrosophic Triplets for Green Supplier Selection in Sustainable Manufacturingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.eswa.2024.124744-
dc.identifier.isiWOS:001268961000001-
dc.relation.journalvolume255en_US
dc.identifier.eissn1873-6793-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1English-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Electrical Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:電機工程學系
顯示文件簡單紀錄

Page view(s)

149
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋