http://scholars.ntou.edu.tw/handle/123456789/25442
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Ming-Shue | en_US |
dc.contributor.author | Wu, Jenq-Lang | en_US |
dc.contributor.author | Arunkumar, Arumugam | en_US |
dc.date.accessioned | 2024-11-01T06:30:33Z | - |
dc.date.available | 2024-11-01T06:30:33Z | - |
dc.date.issued | 2024/1/1 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | http://scholars.ntou.edu.tw/handle/123456789/25442 | - |
dc.description.abstract | In this paper, we introduce an innovative generalized Lyapunov theorem and a novel bounded real lemma designed for continuous-time linear singular systems with Caputo fractional derivative of order $\alpha $ , with the constraint 1 <= alpha < 2 . We initially present a condition that is both necessary and sufficient for establishing the admissibility of singular fractional-order systems (SFOSs). This condition is articulated through strict linear matrix inequalities (LMIs). Following this, we demonstrate that a SFOS satisfies H-infinity norm requirement if and only if two strict LMIs are feasible. The key advantage of the presented LMI conditions is that only one matrix variable needs to be solved. Ultimately, this paper concludes by presenting illustrative examples that highlight the practical effectiveness of our theoretical findings. | en_US |
dc.language.iso | English | en_US |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | en_US |
dc.relation.ispartof | IEEE ACCESS | en_US |
dc.subject | Linear matrix inequalities | en_US |
dc.subject | Stability criteria | en_US |
dc.subject | Numerical stability | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Complexity theory | en_US |
dc.subject | Circuit stability | en_US |
dc.subject | Transfer functions | en_US |
dc.subject | Lyapunov methods | en_US |
dc.subject | Generalized Lyapunov theorem | en_US |
dc.subject | Caputo fractional-order singular syste | en_US |
dc.title | Bounded Real Lemma for Singular Caputo Fractional-Order Systems | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1109/ACCESS.2024.3434729 | - |
dc.identifier.isi | WOS:001288383100001 | - |
dc.relation.journalvolume | 12 | en_US |
dc.relation.pages | 106303-106312 | en_US |
item.cerifentitytype | Publications | - |
item.openairetype | journal article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | no fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | English | - |
crisitem.author.dept | College of Electrical Engineering and Computer Science | - |
crisitem.author.dept | Department of Electrical Engineering | - |
crisitem.author.dept | National Taiwan Ocean University,NTOU | - |
crisitem.author.orcid | 0000-0003-1621-3812 | - |
crisitem.author.parentorg | National Taiwan Ocean University,NTOU | - |
crisitem.author.parentorg | College of Electrical Engineering and Computer Science | - |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。