http://scholars.ntou.edu.tw/handle/123456789/25515
標題: | Progressive Ensemble Learning for in-Sample Data Cleaning |
作者: | Wang, Jung-Hua Lee, Shih-Kai Wang, Ting-Yuan Chen, Ming-Jer Hsu, Shu-Wei |
關鍵字: | Training;Data models;Cleaning;Noise measurement;Image classification;Complexity theory;Training data;Ensemble learning;Data integrity;Transfer learning;Convolutional neural networks;Noisy data;ensemble learning;data cleanline |
公開日期: | 2024 |
出版社: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
卷: | 12 |
起(迄)頁: | 140643-140659 |
來源出版物: | IEEE ACCESS |
摘要: | We present an ensemble learning-based data cleaning approach (touted as ELDC) capable of identifying and pruning anomaly data. ELDC is characterized in that an ensemble of base models can be trained directly with the noisy in-sample data and can dynamically provide clean data during the iterative training. Each base model uses a random subset of the target dataset that may initially contain up to ... |
URI: | http://scholars.ntou.edu.tw/handle/123456789/25515 |
ISSN: | 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3468035 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。