Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/4876
DC 欄位值語言
dc.contributor.authorTseng, C. H.en_US
dc.contributor.authorChang, C. W.en_US
dc.contributor.authorDah-Jing Jwoen_US
dc.date.accessioned2020-11-19T03:03:43Z-
dc.date.available2020-11-19T03:03:43Z-
dc.date.issued2011-02-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/4876-
dc.description.abstractIn this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofSensorsen_US
dc.subjectintegrated navigationen_US
dc.subjectunscented Kalman filteren_US
dc.subjectinteracting multiple modelen_US
dc.subjectfuzzy logicen_US
dc.titleFuzzy Adaptive Interacting Multiple Model Nonlinear Filter for Integrated Navigation Sensor Fusionen_US
dc.typejournal articleen_US
dc.identifier.doi<Go to ISI>://WOS:000287735400052-
dc.identifier.doi<Go to ISI>://WOS:000287735400052-
dc.identifier.doi10.3390/s110202090-
dc.identifier.doi<Go to ISI>://WOS:000287735400052-
dc.identifier.doi<Go to ISI>://WOS:000287735400052-
dc.identifier.url<Go to ISI>://WOS:000287735400052
dc.relation.journalvolume11en_US
dc.relation.journalissue2en_US
dc.relation.pages2090-2111en_US
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypejournal article-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextno fulltext-
item.cerifentitytypePublications-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Communications, Navigation and Control Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:通訊與導航工程學系
顯示文件簡單紀錄

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋