Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Design and Drive Control Technology for High-Efficiency Halbach Magnetic Array and Double-Gap Transverse Flux Sensorless Brushless DC Motors with Low Rare Earth Materials

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Design and Drive Control Technology for High-Efficiency Halbach Magnetic Array and Double-Gap Transverse Flux Sensorless Brushless DC Motors with Low Rare Earth Materials
Code/計畫編號
NSC102-2221-E019-054
Translated Name/計畫中文名
高效率集磁排列與雙氣隙轉置磁通之低稀土無感測器直流無刷馬達設計與驅動控制技術
 
Project Coordinator/計畫主持人
Hsing-Cheng Yu
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Systems Engineering and Naval Architecture
Website
https://www.grb.gov.tw/search/planDetail?id=3107654
Year
2013
 
Start date/計畫起
01-08-2013
Expected Completion/計畫迄
01-08-2014
 
Bugetid/研究經費
667千元
 
ResearchField/研究領域
電子電機工程
 

Description

Abstract
"近年來面臨稀土磁鐵成本急遽上揚且不易取得的困境,本計畫提出 Halbach 集磁 排列轉子成型技術與雙氣隙轉置磁通定子技術的設計概念,製作具有高效率、高功率 密度、高扭力密度、低徑長比優勢的低稀土薄型馬達。由於薄型馬達具有輕量化與體 積小的優勢,以直驅式和嵌入式設計方式可應用在高階伺服驅動、流體機械、及醫療 輔具等領域中,可充分發揮其零件簡化、節約能源與產品優值化等特點。本計畫第一 年度透過 Halbach 集磁排列轉子成型技術可提高氣隙磁通密度,漸變式磁極排列設計 可把磁力線有效地集中,以增加磁鐵的使用率,且降低永磁轉子的稀土佔馬達比重。 另外,雙氣隙轉置磁通定子技術透過雙轉子/單定子或雙定子/單轉子的 C 型堆疊轉 定子配置架構,利用雙繞組來倍增迴路的磁通量,同時可增加氣隙作用面積,更進一 步有效提升扭力輸出。本計畫第二年度加入層疊複合磁鐵技術與磁通諧波調整策略, 達到表面磁漸變、複合磁鐵與局部磁阻調控技術,更能降低稀土使用量,以及提高馬 達整體效率及降低馬達生產成本。但由於 Halbach 集磁排列與層疊複合磁鐵技術易使 得磁鐵表面磁場強度呈現非均勻弦波磁力分佈,而使得馬達轉矩漣波變大,進而影響 馬達運轉性能;因此,本計畫結合順滑模態控制之無感測器馬達驅動與磁場導向控制 技術加入直接扭矩控制器與磁通諧波調整策略,利用磁通估測器取得磁通變化趨勢, 並將諧波消除策略注入電流回授控制器,以補償磁通變化以獲得穩定之輸出轉矩,並 利用嵌入式系統加以實現低稀土馬達的轉速閉迴路控制。整體計畫主要目標以開發 400W 功率等級,其額定轉速 4,000 rpm的低稀土薄型馬達,其指標規格設定馬達徑長 比 L/D小於 0.15,稀土佔馬達比重小於 0.1,馬達整體效率可達到 90%以上。" "In recent years, rare earth material rise cost rapidly and difficult to obtain. Hence, this project propose the design concepts of axial-flux slim sensorless brushless DC motors with low rare earth material to obtain better performance of high efficiency, power density, and torque density, and low diameter-to-length ratio by using the rotor molding technology of Halbach magnetic array and transverse flux stator technology with dual air-gap. Because slim motors have advantages of light-weight and small-dimension, the design methodology of direct-drive and embedded systems can play important roles for component simplicity, energy-saving, and high-value products to apply in high-level servo driver, fluidic machinery, and medical assistive device. In the first year of this project, the motor performance can improve the air-gap flux density, and the design method of variable magnetic array can effectively concentrate the magnetic flux lines to increase the utilization rate of the permanent magnet, and to reduce the rare earth material ratio (RER) of permanent magnet rotor by adopting the rotor molding technology of Halbach magnetic array. In addition, the C-type laminated configuration architecture of dual-rotor/single-stator or dual-stator/single-rotor can double the magnetic flux and action area in air gap, and can improve the torque output effectively by adopting transverse flux stator technology with dual air-gap. In the second year of the project, the design concepts of the laminated technology of composite soft magnetic material and flux harmonics modified strategy can reach the surface of the magnetic gradient, composite magnets and partial reluctance adjustment control technology to reduce rare earth adoption, as well as improve motor overall efficiency and reduce motor production costs. However, the magnetic field distributions of the rotor magnets are easily affected by using the rotor molding technology of Halbach magnetic array and laminated technology of composite soft magnetic material to present non-uniform sinusoidal wave, and more serious torque ripple appear to affect the dynamic performance of motor. Therefore, sensorless and field-oriented control drive technology with direct torque control and sliding mode control are combined to compensate the variable magnetic flux via flux observer and can obtain stable torque output in this project, and the closed-loop speed control algorithm of axial-flux slim sensorless brushless DC motors with low rare earth material can be achieved on embedded systems. The project target focus on 400W slim servomotor development, and the rated speed setup at 4,000 rpm, and the specifications setup at diameter-to-length ratio L/D<0.15, RER<0.1, and overall motor efficiency can reach to 90%."
 
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback