Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Application of the Adjoint Method to the Propeller Designs

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Application of the Adjoint Method to the Propeller Designs
Code/計畫編號
NSC97-2221-E019-054-MY2
Translated Name/計畫中文名
應用伴隨方法於螺槳最佳化設計
 
Project Coordinator/計畫主持人
Ching-Yeh Hsin
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Systems Engineering and Naval Architecture
Website
https://www.grb.gov.tw/search/planDetail?id=1766466
Year
2009
 
Start date/計畫起
01-08-2009
Expected Completion/計畫迄
01-07-2010
 
Bugetid/研究經費
590千元
 
ResearchField/研究領域
機械工程
 

Description

Abstract
"本計畫的目的是藉由探討目前的螺槳設計方法,以及對照於未來螺槳 發展的可能性,根據伴隨方法與最佳化理論,建立一新的螺槳設計方法。 目前螺槳設計方法的問題,最主要的在於勢流的適用性與決定螺槳負荷與 幾何的最佳化方法,前者不在本計畫的內容下,對於後者,由梯度法與搜 尋法兩種設計方法的探討中,發現搜尋法在現階段並不適用,而梯度法中 的梯度計算是目前的問題所在。應用伴隨方法的好處即在於可以有效率的 解決梯度計算問題。本計畫預期在兩年中完成應用伴隨方法的螺槳設計方 法,預定第一年將探討伴隨方法理論,並推導伴隨方程式,並將其應用於 螺槳升力面法與邊界元素法,進行螺槳設計;第二年的工作是繼續第一年 的螺槳設計,但將專注於應用邊界元素法的設計。在第二年的計畫中,將 試圖以B-Spline 定義幾何,並且將設計的螺槳種類推廣至特殊螺槳。如 Kappel 螺槳、CLT 螺槳與多元件推進器。 所提計畫中將根據不同計算方法推導伴隨方程式,由此建立對應的螺槳 升力面渦格法與三維邊界元素法,進行勢流假設下的螺槳設計。計畫中並 將對於所提方法所設計的螺槳予以評估,比較伴隨方法與其他方法的設計 結果與計算效率,探討不同離散化方法對於設計結果的影響。" "The purpose of the proposed project is to develop a propeller design method according to the future needs. The proposed method is based on the Lagrange multiplier method and the adjoint method. The key problems of the propeller design methods are the flow field assumptions and the optimization scheme used in the design methods. This project concentrates on the latter problem. After the investigations of the gradient methods and the searching methods, we found that the searching methods are not feasible for the time being, and the gradient methods are suffering from the inefficient computational time of the gradients. The adjoint method is hence used to solve this problem. In this proposed two-year project, we will study the adjoint method and derive adjoint equations for the three-dimensional propeller vortex lattice method and boundary element method in the first year. We will also design propellers based on the developed method. In the second year, we will focus our effort on the boundary element method for designs. The propeller geometry will be defined by B-splines, and the designs of unconventional propellers, such as the Kappel propeller, the CLT propellers, and multi-component propulsors will be carried out. In this proposed project, the adjoint equations from different computational methods will be derived, such as the vortex lattice method and the boundary element method. These methods will then be applied to the propeller designs. Propellers designed by the proposed methods will be evaluated and analyzed, and design results will be compared to the designs using other design methods. The computational efficiency and the influence of different discretizations will be investigated to evaluate the effectiveness of the adjoint method."
 
Keyword(s)
螺槳設計
最佳化
伴隨方法
邊界元素法
propeller design
optimization
adjoint method
boundary element method
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback