Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Method of Fundamental Solutions for Solving the Velocity-Vorticity Formulation

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Method of Fundamental Solutions for Solving the Velocity-Vorticity Formulation
Code/計畫編號
NSC98-2218-E019-001
Translated Name/計畫中文名
以基本解數值方法求解速度渦度方程式
 
Project Coordinator/計畫主持人
Chia-Ming Fan
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Harbor and River Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=1817095
Year
2009
 
Start date/計畫起
01-02-2009
Expected Completion/計畫迄
31-07-2009
 
Bugetid/研究經費
126千元
 
ResearchField/研究領域
土木水利工程
 

Description

Abstract
"本計畫將測試目前最新的無網格數值計算方法,也就是基本解數值計算方法,求 解速度渦度方程式。直接求解不可壓縮黏性流體的流動控制方程式會遇到壓力條件無 法明確給定的問題,因此,使用渦度的觀念可以將控制方程式轉換成速度渦度方程式, 此一方程式系統可以避免直接求解壓力的問題,因此本計畫將求解速度渦度方程式來 分析不可壓縮黏性流體的流動。基本解數值方法為目前新發展的無網格數值計算方法 之一,由於在計算過程中不需要記錄點與點的關係,因此大大的提高了計算的效率與 降低電腦資源的需求量。本計畫預計以有限差分法先將時間軸離散,將每一時刻的渦 度傳輸方程式轉換成對流擴散反應方程式,再採用基本解數值方法求解每一時刻的渦 度分佈。一旦渦度求出來之後就可以當作速度卜松方程式的非齊性項,並用基本解數 值方法再將速度分佈求解出來。此一數值方法具有高精準度且快收斂的特性,因此在 求解流場上不僅避免記錄網格的關係,還可以利用非常少的計算點數求出相當精確的 答案。所以本計畫預計以基本解數值方法求解速度渦度方程式,分析此一無網格數值 計算方法在模擬不可壓縮流體流動的可行性與效率。""The objective of this project is to analyze the viscous incompressible fluid flow by the method of fundamental solutions. In most practical situation, the conditions for pressure can not be specified clearly when the Navier-Stokes equations are considered. Therefore, by introducing the vorticity, the Navier-Stokes equations can be transformed to the velocity-vorticity formulation. Hence, the problems of pressure can be avoided. In this project, we will test the efficacy of the method of fundamental solutions for solving the velocity-vorticity formulation. The method of fundamental solutions is one of the promising meshless methods, since the nodal connectivity is no more needed in the simulation. It can greatly simplify the computation resource required and increase the efficiency of the simulation. First, the finite difference method will be used for discretizing time axis. Hence, the time-dependent vorticity transport equation will be transformed to the convection-diffusion-reaction equations for every time step. The method of fundamental solutions will be used for solving the vorticity. Then the Poisson equations can be solved by using the same meshless method. From previous researches, the method of fundamental solutions can obtain very accurate numerical results even very few nodes are used. Therefore, the objective of this project is to develop a numerical scheme, based on the method of fundamental solutions, to analyze the velocity-vorticity formulation."
 
Keyword(s)
無網格方法
基本解方法
速度渦度方程式
高精準度
快收斂
meshless method
method of fundamental solutions
velocity-vorticity formulation
high accuracy
fast convergence
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback