Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Applications of Generalized Finite Difference Method and Rigid Body Rule to Geometrically Nonlinear Thin-Plate Theory

View Statistics Email Alert RSS Feed

  • Information

Details

Project title
Applications of Generalized Finite Difference Method and Rigid Body Rule to Geometrically Nonlinear Thin-Plate Theory
Code/計畫編號
MOST106-2221-E019-016
Translated Name/計畫中文名
廣義有限差分法與剛體運動法則在薄板幾何非線性分析之應用
 
Project Coordinator/計畫主持人
Shyh-Rong Kuo
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
范佳銘
 
Department/Unit
Department of Harbor and River Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=12240956
Year
2017
 
Start date/計畫起
01-08-2017
Expected Completion/計畫迄
31-07-2018
 
Co-Investigator(s)
Chia-Ming Fan
Bugetid/研究經費
591千元
 
ResearchField/研究領域
土木水利工程
 

Description

Abstract
"本計畫應用「廣義有限差分法(Generalized Finite Difference Method)的強形式無網格」及「剛體運 動法則(Rigid Body Motion Rule)的力平衡」特性,建立薄板具大變形大轉角的幾何非線性理論及數值 分析架構。計畫共分為三階段:(1)根據全量式推演法,提出具有「大變形、大轉角」條件下之顯示型 薄板結構幾何非線性理論,並應用大轉角剛體運動法則檢驗此理論的正確性;(2)忽略自然變形的幾何 非線性效應及應用剛體運動法則,以廣義有限差分法為數值離散化基礎,提出一個兼顧簡單及計算效 率的薄板幾何非線性增量力平衡方程式;(3)利用增量迭代法分析薄板的幾何非線性行為,以驗證本計 畫所提出的非線性理論及數值分析架構之合理性。其中(3)所提的增量迭代過程有幾項特色:(1)預測階 段—忽略自然變形的幾何非線性效應,建立簡易有效率的線性化增量位移預測方程式;(2)修正階段— 採用全量式顯示型薄板幾何非線性微分方程式以避開更新參考座標,並提升計算效率及正確性。由 此,基於強形式無網格法所建立的薄板幾何非線性分析架構,可改善因薄板變形後近似平面之假設所 產生的誤差累積,引致精度降低而影響計算效率的問題。""Based on the Generalized Finite Difference Method (GFDM) and the Rigid Body Motion Rule, the geometric nonlinear thin-plate theory with consideration of finite deformations and rotations will be developed in this project. The framework of this project includes: (1) Total Lagrangian formulation of geometric nonlinear thin-plate theory based on the force equilibrium consideration of rigid body rule; (2) GFDM based on strong-form meshless method in an incremental state; and (3) Incremental-Iterative procedure for numerical verifications of the thin-plates in large deformations. The features of the incremental-iterative procedure proposed herein include: (1) Predictor: the geometric effects due to natural deformation were neglected for simplifying construction of linearized incremental equations in predicted stage; (2) Corrector: the use of total Lagrangian formulation of thin-plates can save the CPU time in updating nodal coordinates of the plates during large deformations. Moreover, the computational framework based on the GFDM of strong-form meshless method and rigid body rule can reduce the error accumulation of computations and increase the computational efficiency due to the assumption of rigid plane of conventional thin-plate theory."
 
Keyword(s)
大變形
大轉角
力平衡
廣義有限差分法
無網格法
剛體運動法則
全量式推演法
Finite Deformations
Finite Rotations
Force Equilibrium
Generalized Finite Difference Method
Meshless Method
Rigid Body Test
Total Lagrangian Formulation
 
Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback