Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Research and Development for in Situ Fast Lipid Extraction and Production Technology of Microalgae Biodiesel

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Research and Development for in Situ Fast Lipid Extraction and Production Technology of Microalgae Biodiesel
Code/計畫編號
MOST104-ET-E019-002-ET
Translated Name/計畫中文名
利用同位(in situ)技術快速萃取與製備微藻生質柴油的製程研發
 
Project Coordinator/計畫主持人
Cherng-Yuan Lin
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Marine Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=11259463
Year
2015
 
Start date/計畫起
01-01-2015
Expected Completion/計畫迄
31-12-2015
 
Bugetid/研究經費
750千元
 
ResearchField/研究領域
生物技術(理)
能源工程
 

Description

Abstract
微藻是地球上經由光合作用生產油脂效率最高的生物體,被視為製造生質燃料最有發展潛力的料源,不過利用微藻生產生質柴油的製程成本過高,尤其在油脂萃取及轉酯化過程。為提昇本製程的成本效益,本計畫利用高溫高壓反應爐將培育完成之乾燥微藻體與甲醇及冰醋酸混合後於甲醇超臨界系統的狀態下,進行同位的油脂萃取與轉酯化反應,以大幅降低製程時間,同時提高反應效率。經過純化後的微藻生質柴油進行其脂肪酸結構、元素組成與各項油品性質測試。研究結果顯示,經使用氣相層析儀分析,本實驗所製備的微藻生質柴油的脂肪酸結構以C16 :0與C18 :3為主。當使用KOH為催化劑時,在反應溫度100℃且反應時間30 min,且正己烷添加量為90 %時,得最高甲基酯含量。當利用CH3COOH為催化劑時,在正己烷添加量為70 %、反應溫度220 ℃且反應時間為60 min等條件下,有最高的甲基酯含量、十六烷值與次高的氧化穩定性,生質柴油的熱值達39.0 MJ/kg,且脂肪酸結構與以KOH製備之生質柴油相近,並具有比以KOH所製備之生質柴油較高的十六烷值與氧化穩定性;另外隨著反應溫度的上升,大幅縮短利用CH3COOH為觸媒製備生質柴油的時間。Microalgae bear the highest efficiency of lipid production through photosynthesis process among all the living organisms in the world and thus have been considered as the most potential feedstocks for biofuel production. However, the production cost for the biodiesel from microalgae is too high, particularly during the processes of lipid extraction and transesterification. To develop a high cost-effective production process, a high-pressure and high-temperature reactor was used to carry out the in situ microalgae lipid extraction and transesterification within a supercritical methanol operating system in which frozen-dried microalgae powder after being cultured in sea water and harvested was mixed with potassium hydroxide or glacial acetic acid and methanol in this study. The process time for biodiesel production was largely reduced. The crude microalgae biodiesel was thereafter rinsed and purified with adequate solvents. The structure of fatty acids, elemental contents and various fuel properties were analyzed for the microalgae biodiesel. The experimental results showed that the microalgae FAMEs were primarily composed of C16:0 and C18:3. If KOH catalyst was used, the highest quantity of FAMEs was obtained under the conditions of reaction temperature 100℃, reaction time 30 min, and 90% n-hexane amount. For the case of acid catalyst CH3COOH, the FAMEs produced under the conditions of 70% n-hexane amount used, reaction temperature 220℃, and reaction time 60 min appeared to have the highest FAME quantity and cetane number. Moreover, the produced FAMEs using the catalyst CH3COOH were observed to have higher cetane number and oxidation stability than those using KOH. In addition, the reaction time of in-situ transesterification was significantly reduced when the reaction temperature was increased from 100℃ to 220 ℃.
 
Keyword(s)
微藻
生質柴油
超臨界系統
燃料特性
同位生產
Microalgae
biodiesel
supercritical system
luel characteristics
in situ production
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋