Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Low Temperature Synthesizing/Sintering High Ionic Conductivity Solid Electrolyte and Impedance Measurement

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Low Temperature Synthesizing/Sintering High Ionic Conductivity Solid Electrolyte and Impedance Measurement
Code/計畫編號
NSC98-2622-E019-005-CC3
Translated Name/計畫中文名
低溫製作燒結高離子導電率固態電解質及阻抗量測研究
 
Project Coordinator/計畫主持人
Horng-Yi Chang
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Marine Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=1922699
Year
2009
 
Start date/計畫起
01-07-2009
Expected Completion/計畫迄
30-06-2010
 
Bugetid/研究經費
580千元
 
ResearchField/研究領域
材料科技
 

Description

Abstract
在各種燃料電池種類中,固態氧化物燃料電池(SOFC)使用在大功率系統中的電力效率最高;應用在動力系統或發電系統是取代化石燃料系統的極佳候選者。然而傳統氧化鋯基的SOFC操作溫度需要800°C以上,使得燃料電池系統連接體選材困難,電池組界面熱膨脹匹配不易,易產生熱應力,減低壽命。極需發展中溫(400-750°C)操作的固態氧化物燃料電池,關鍵在於需有高離子傳導性,可以製作薄層或高導電的電解質材料。氧化鈰(CeO2)基材料經稀土元素摻雜易得高氧離子導電性。多元摻雜如(La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891 (LSBC)的組成更能提高電解質導電度。傳統氧化物合成的LSBC需要極高燒結溫度(>1500°C)才能緻密化獲得良好特性,高燒結溫度不易與較低溫燒結的陰、陽電極共燒結,在高溫燒結中氧氣不足易導致鈰元素的還原(Ce4+→Ce3+),劣化電解質特性。奈米粒子與塊材相比具有較高觸媒活性、較低燒結溫度、較佳導電性。微波製程是一綠色、快速、省能、可細化材料微結構的技術。本計畫將利用溶液蒸發法製備LSBC奈米粒子,微波製程緻密化LSBC電解質材料。量測與分析細晶粒結構電解質之導電度、電化學穩定性、熱穩定性及阻抗等性質,並以電化學阻抗分析(EIS)檢測電解質與陰、陽極共燒後之半電池及全電池之阻抗,建立製程與量測之規範。Solid oxide fuel cell (SOFC) is suitable for high power system due to its highest efficiency of power generation in various fuel cells. It is an excellent candidate instead of fossil fuels to be applied in power plants and power generation systems. The conventional zirconia-based SOFC requires so high operating temperature over 800°C that interconnector materials is difficult to meet and thermal expansion among interfaces of electrolyte and electrodes as well as interconnectors matches uneasily. Then, the available life is reduced due to corrosion and thermal stress at high operating temperature. Therefore, it is necessary to develop intermediate-temperature SOFC (IT-SOFC, 400-750°C). The key issue is to find the electrolyte layer with high oxygen ionic conductivity. The CeO2-based materials doped with rare-earth elements can achieve high oxygen ionic conductivity. Multi-elements doping (La0.75Sr0.2Ba0.05)0.175Ce0.825O1.891 (LSBC) can exactly obtain high oxygen ionic conductivity. However, conventional sintering LSBC did not obtain high densification and good electrical properties until 1500°C. On the other respect, the high temperature sintering can not match co-sintering electrolyte with anode and cathode. The reduction of Ce4+→Ce3+ also occurs at high sintering temperature in oxygen-defficient atmosphere as to degrading the electrolyte properties. In comparison with the bulk materials, nanoparticles possess high catalytic activity, low sintering temperature and excellent conductivity. Microwave process is a green, fast, energy-saving and fining microstructure technology. In this work, LSBC nanoparticles are synthesized by solution-evaporation method. Densified LSBC electrolyte is performed by microwave sintering at lower temperature. Fine structural electrolyte is characterized with conductivity, chemical and thermal stabilities as well as impedance. Electrochemical impedance analysis (EIS) is used to inspect the half-cells of co-sintered electrolyte-cathode, electrolyte-anode and full-cell of anode-electrolyte-cathode. The investigations will be utilized as standard of cell certification.
 
Keyword(s)
固態氧化物燃料電池(SOFC)
CeO2基材料
微波製程
電化學阻抗分析(EIS)
solid oxide fuel cell (SOFC)
CeO2-based materials
microwave sintering
Electrochemical impedance analysis (EIS)
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋