Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Applying Passivity Theory to Design Fuzzy Controllers for Affine T-S Fuzzy Models (II)

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Applying Passivity Theory to Design Fuzzy Controllers for Affine T-S Fuzzy Models (II)
Code/計畫編號
NSC97-2221-E019-023
Translated Name/計畫中文名
應用被動理論設計仿射式T-S模糊模型之模糊控制器(II)
 
Project Coordinator/計畫主持人
Wen-Jer Chang
Funding Organization/主管機關
National Science and Technology Council
 
Department/Unit
Department of Marine Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=1698794
Year
2008
 
Start date/計畫起
01-08-2008
Expected Completion/計畫迄
31-07-2009
 
Bugetid/研究經費
584千元
 
ResearchField/研究領域
電子電機工程
 

Description

Abstract
"本申請案是我們去年計畫 NSC96-2221-E-019 -033 的第二年計畫。在此 計畫中,我們擬定了兩年的研究進度目標,第一年的進度中,我們已針對離 散型聯結車非線性系統設計可消除外部雜訊性能之模糊控制器。針對此問 題,我們利用仿射式 T-S 模糊模型來替代原始的非線性動態系統,並針對 仿射式T-S 模糊模型,推導出一組充分條件來設計出可以消除外部雜訊且可 保證系統穩定之模糊控制器。在第二年的進度中,我們將針對連續型倒單擺 非線性系統設計滿足被動性能需求的模糊控制器。相同地,透過控制器的回 授控制,使得系統本身具備了消除雜訊以及保持穩定的特性。再者,我們也 將嘗試設計出比較寬鬆的限制條件,當系統變得比較複雜的情況下,經由我 們所推導的放寬條件亦可以達到我們所需要的性能以及系統穩定的目標。在 此發展中我們將利用被動理論以及穩定性分析法則作為主要理論的發展依 據,並協助我們得到所需要的性能條件。 結合被動理論設計仿射式 T-S 模糊模型的模糊控制器,在現今控制方 法中是一項新的理論發展,其所推導出來的特性條件通常屬於雙線性矩陣不 等式 (BMI) ,其控制器的解析無法透過最佳化凸型集合演算法直接求解。 為了得到有效解,在本計畫中我們將應用反覆式線性矩陣不等式 (ILMI) 方法來將 BMI 問題轉換成線性矩陣不等式 LMI 的問題,並且透過最佳 凸型集合演算法來求得所需之模糊控制器。最後,我們將利用實驗及模擬 來驗證本計畫所提出模糊控制器設計方法應用在連續型倒單擺系統的可用 性與有效性。"
"This proposal is the second year part of our project NSC96-2221-E-019 -033. At the first year, we have designed a fuzzy controller which is provided with attenuating external disturbance for discrete truck-trailer nonlinear system. Through the problem of nonlinear fuzzy controller synthesis, the affine T-S fuzzy model is substituted for the original nonlinear system. In term of the affine T-S fuzzy model, the discrete fuzzy controller is designed via sufficient conditions, which can achieve the performance of attenuating external disturbance and system stability. At the second year, we will design a fuzzy controller, which can achieve passivity performance, for the continuous pendulum nonlinear system. At the same way, the continuous pendulum nonlinear system can achieve the performance of attenuating external disturbance and system stability via feedback control of fuzzy controllers. Moreover, we will also try to develop the relaxed conditions for achieving performance requirements and system stability when the system exits in complex environment. The proposed approach is developed based on the passivity theory and the rules of stability analysis, which can achieve the performance requirements. In the modern control, developing a fuzzy controller design with passivity theory for the affine T-S fuzzy models is a new approach. In general, the conditions derived by this approach are of the Bilinear Matrix Inequality (BMI) forms. This controller synthesis problem cannot be solved by an optimal convex algorithm directly. In order to obtain the feasible solutions, we apply the Iterative Linear Matrix Inequality (ILMI) method to convert the BMI problems to Linear Matrix Inequality (LMI) problems. Afterwards, we use the optimal convex algorithm to obtain the feasible fuzzy controllers. Finally, the proposed fuzzy controller design approach will be tested and verified via numerical simulations. Through the results of simulations, the application and usefulness of the proposed fuzzy controller design approaches can be applied for the continuous pendulum nonlinear systems."
 
Keyword(s)
模糊控制
被動特性
連續型倒單擺非線性系統
反覆式線性矩陣不等式
Fuzzy Control
Passivity
Continuous Pendulum Nonlinear Systemand Iterative Linear Matrix Inequality
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋