Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub

Optimal Unit Commitment and Its Improvement for the Demand Bidding Mechanism of Taipower(1/2)

瀏覽統計 Email 通知 RSS Feed

  • 簡歷

基本資料

Project title
Optimal Unit Commitment and Its Improvement for the Demand Bidding Mechanism of Taipower(1/2)
Code/計畫編號
MOST109-2221-E019-014-MY2
Translated Name/計畫中文名
因應台電現行需量競價之最佳機組排程及其改善規劃(1/2)
 
Project Coordinator/計畫主持人
Chun-Lung Chen
Funding Organization/主管機關
National Science and Technology Council
 
Co-Investigator(s)/共同執行人
李聰穎
 
Department/Unit
Department of Marine Engineering
Website
https://www.grb.gov.tw/search/planDetail?id=13531863
Year
2020
 
Start date/計畫起
01-08-2020
Expected Completion/計畫迄
31-07-2021
 
Bugetid/研究經費
1018千元
 
ResearchField/研究領域
能源工程
 

Description

Abstract
環保意識的逐漸高漲與傳統石化能源的即將耗竭,促使電力系統有極高的興趣倂入風力能源與智慧電動車,然而當孤立電力系統併入大量的風力能源與電動車時,由於風力能源發電輸出的不確定性以及電動車充放電控制的隨意性,將增加系統操作者在電力調度上的負擔,其中一項相當重要且極具挑戰性的問題即是如何有效地管理風力能源輸出發電量的變動性,另一項重要議題則是如何評估大量電動車倂入電網對於發電端、輸電端及配電端所帶來的衝擊。隨著風力機組輸出功率的增加,系統必須提供更多的備轉容量以強化供電的安全與可靠,且將充裕的緊急備轉容量分散至系統各區域的不同火力機組上,有助於孤立系統於緊急事故發生或風力機組輸出功率變動過大時,較有能力反應頻率的變動及系統負載的快速提升;此外,需量反應(可視為虛擬機組)及電動車儲能系統若能經由適當地管控亦可強化多區域孤立系統供需平衡的能力。本研究計畫之目的擬提出分層分區之能源管理系統架構,探討大規模電動車與電網雙向互動之多層多區的調度模式,期能一併解決虛擬機組調度、各區域備轉容量分配、區域間壅塞管理、風力發電不確定性及電動車充電隨意性的問題,進而探討各區域電動車集總儲能系統、風火力發電系統與虛擬機組競價發電量之間的協調問題,以改善孤立電力系統運轉的效率與可靠。研究結果可以作為電力公司及時間電價能源用戶設置電動車推動智慧電網的參考,對於臺灣推動智慧電網、電動車及需量競價會有正面的助益。
The rise of environmental protection and the progressive exhaustion of traditional fossil energy sources have increased the interests in integrating wind energy sources and electric vehicles (EVs) into existing power systems. However, it is widely believed that large wind and EV penetrations would put an increased burden on system operations due to the uncertain nature of wind power and uncontrolled charging/discharging procedure of EVs. One of the most important future challenges seems to be the management of the integration of fluctuations in the electricity production from wind energy sources. Another important issue regarding the integration of EVs into an isolated system is to assess the impact on generation, transmission and distribution grid side. To further ensure the security and reliability of a power system with WTGs, maintaining sufficient emergency reserve across several thermal units in each area is much more capable of responding frequency deviations and system load pick-up following a contingency for an isolated multi-area system such as Taiwan power system. Demand response (or the Virtual Power Plant; VPP) and EVs are also envisioned as a promising solution to address the demand-supply mismatch issues in electric power systems. A new conceptual framework based on a three-level hierarchy for energy management system (EMS) is developed for achieving optimal utilization of wind energy sources, VPP and electric vehicles energy storage system. Several key issues of EV-wind-thermal-VPP coordination scheduling in a power system are also investigated and discussed in this research to ensure the security and reliability of the isolated system. The results may serve as a tool for Taiwan power company and TOU users to assess and set up EVs and may serve as a reference for domestic promotion of smart grid, thereby contributing positively to the promotion of smart grid, VPP and EV.
 
Keyword(s)
智慧電網
電動車
虛擬機組
時間電價
再生能源
備轉容量
smart grid
electric vehicles
virtual power plant
time-of-use rate
renewable energy
spinning reserve
 
瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋